PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Utilization of wrightia tinctoria nano seed fibers as a reinforcement in the preparation of epoxy-based composites

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
Natural seed fiber reinforced composite materials are replacing many conventional ones because of their excellent properties, less weight, easy availability, etc. Composite materials are used in many areas because of their superior features. Mechanical property is one of the vital parameters for choosing the material. The current investigation has revealed an importance of recently well-known Wrightia tinctoria nano seed fibers (WTNSFs), which are extracted physically. Wrightia tinctoria nano seed fiber reinforced composite was prepared with the epoxy resin by hand layup method. Epoxy resin is easy to handle and available at low cost. Mechanical tests are conducted reinforced composites of plain epoxy and WTNSFs to obtain strength properties like tensile, flexural, impact. Water absorption tests also performed on composites. Here, the developed composites are easy to handle, offered economically, and used primarily in marine applications due to less water absorption and good wax content. A comprehensive description of different tests and the properties of WTNSFs are studied and compared with the other existing natural fibers. This work showed that 35% combination of WTNSFs reinforced epoxy matrix offers enhanced mechanical properties with minimum water absorption compared with plain epoxy composites.
Twórcy
  • Department of Civil Engineering, Vignan’s Foundation for Science, Technology & Research Vadlmudi, 522213 Andhra Pradesh ,522213, India
  • Department of Civil Engineering, Vignan’s Foundation for Science, Technology & Research Vadlmudi, 522213, Andhra Pradesh ,522213, India
  • Department of Civil Engineering, Sree Chaitanya Engineering College Karimnagar, 505527, Telangana, India
  • Department of Botany, Yogi Vemana University Kadapa,516005, Andhra Pradesh, India
Bibliografia
  • [1] R. Nadlene, S.M. Sapuan, M. Jawaid, M.R. Ishak, L. Yusriah, A Review on Roselle Fiber and Its Composites, J. Nat. Fibers. 13 (2016) 10–41. https://doi.org/10.1080/15440478.2014.984052.
  • [2] Z.N. Azwa, B.F. Yousif, A.C. Manalo, W. Karunasena, A review on the degradability of polymeric composites based on natural fibres, Mater. Des. 47 (2013) 424–442. https://doi.org/10.1016/j.matdes.2012.11.025.
  • [3] S.T. Georgopoulos, P.A. Tarantili, E. Avgerinos, A.G. Andreopoulos, E.G. Koukios, Thermoplastic polymers reinforced with fibrous agricultural residues, Polym. Degrad. Stab. 90 (2005) 303–312. https://doi.org/10.1016/j.polymdegradstab.2005.02.020.
  • [4] M.M.. Ansari, A.R.M. Nazim, a Review on Natural Fibre Composites, J. Xidian Univ. 14 (2020) 81–86. https://doi.org/10.37896/jxu14.6/332.
  • [5] B. Rashid, Z. Leman, M. Jawaid, M.J. Ghazali, M.R. Ishak, Physicochemical and thermal properties of lignocellulosic fiber from sugar palm fibers: effect of treatment, Cellulose. 23 (2016) 2905–2916. https://doi.org/10.1007/s10570-016-1005-z.
  • [6] M. Jawaid, H.P.S. Abdul Khalil, Cellulosic/synthetic fibre reinforced polymer hybrid composites: A review, Carbohydr. Polym. 86 (2011) 1–18. https://doi.org/10.1016/j.carbpol.2011.04.043.
  • [7] O. Faruk, A.K. Bledzki, H.P. Fink, M. Sain, Progress report on natural fiber reinforced composites, Macromol. Mater. Eng. 299 (2014) 9–26. https://doi.org/10.1002/mame.201300008.
  • [8] O. Faruk, A.K. Bledzki, H.P. Fink, M. Sain, Biocomposites reinforced with natural fibers: 2000-2010, Prog. Polym. Sci. 37 (2012) 1552–1596. https://doi.org/10.1016/j.progpolymsci.2012.04.003.
  • [9] M. Sfiligoj, S. Hribernik, K. Stana, T. Kree, Plant Fibres for Textile and Technical Applications, in: Adv. Agrophysical Res., InTech, 2013. https://doi.org/10.5772/52372.
  • [10] P. Madhu, M.R. Sanjay, P. Senthamaraikannan, S. Pradeep, S.S. Saravanakumar, B. Yogesha, A review on synthesis and characterization of commercially available natural fibers: Part II, J. Nat. Fibers. 16 (2019) 25–36. https://doi.org/10.1080/15440478.2017.1379045.
  • [11] M. V. Maheshwaran, N.R.J. Hyness, P. Senthamaraikannan, S.S. Saravanakumar, M.R. Sanjay, Characterization of natural cellulosic fiber from Epipremnum aureum stem, J. Nat. Fibers. 15 (2018) 789–798. https://doi.org/10.1080/15440478.2017.1364205.
  • [12] F.P. La Mantia, M. Morreale, Green composites: A brief review, Compos. Part A Appl. Sci. Manuf. 42 (2011) 579–588. https://doi.org/10.1016/j.compositesa.2011.01.017.
  • [13] S. Pujari, T. Venkatesh, H. Seeli, Experimental investigations on thermal conductivity of fenugreek and banana composites, J. Inst. Eng. Ser. D. 99 (2017) 51–55. https://doi.org/10.1007/s40033-017-0146-z.
  • [14] V.V. Vivek, N. Natarajan, S.R. Prabhu, K.L.S. Kumar, R.S. Karrthik, Prediction of mechanical characteristics of Wrightia tinctoria fiber reinforced iso-polyester resin composites, Mater. Today Proc. 45 (2021) 1151–1155. https://doi.org/10.1016/j.matpr.2020.03.486.
  • [15] S. Habibunnisa, R. Nerella, S.C. Madduru, R.G. Reddy S, Physicochemical characterization of lignocellulose fibers obtained from seedpods of Wrightia tinctoria plant, AIMS Mater. Sci. 9 (2022) 135–149. https://doi.org/10.3934/MATERSCI.2022009.
  • [16] P. Manimaran, P. Senthamaraikannan, K. Murugananthan, M.R. Sanjay, Physicochemical Properties of New Cellulosic Fibers from Azadirachta indica Plant, J. Nat. Fibers. 15 (2018) 29–38. https://doi.org/10.1080/15440478.2017.1302388.
  • [17] W. de N.D.R. Martel, I.P. Salgado, F.A. Silva, The Influence of Fiber Treatment on the Morphology, Water Absorption Capacity and Mechanical Behavior of Curauá Fibers, J. Nat. Fibers. 19 (2022) 642–657. https://doi.org/10.1080/15440478.2020.1758863.
  • [18] M. Ardanuy, J. Claramunt, R.D. Toledo Filho, Cellulosic fiber reinforced cement-based composites: A review of recent research, Constr. Build. Mater. 79 (2015) 115–128. https://doi.org/10.1016/j.conbuildmat.2015.01.035.
  • [19] K.M.F. Hasan, P.G. Horváth, T. Alpár, Lignocellulosic Fiber Cement Compatibility: A State of the Art. Review, J. Nat. Fibers. (2021) 1–26. https://doi.org/10.1080/15440478.2021.1875380.
  • [20] M.A. Fuqua, S. Huo, C.A. Ulven, Natural fiber reinforced composites, Polym. Rev. 52 (2012) 259–320. https://doi.org/10.1080/15583724.2012.705409.
  • [21] H.A. Saffian, M. Aizam Talib, S. Hua Lee, P.M. Tahir, C. Hao Lee, H. Ariffin, A.Z. Mohamed Asa’ari, Mechanical strength, thermal conductivity and electrical breakdown of kenaf core fiber/lignin/polypropylene biocomposite, Polymers (Basel). 12 (2020) 1833. https://doi.org/10.3390/POLYM12081833.
  • [22] S.R. Djafari Petroudy, Physical and mechanical properties of natural fibers, in: Adv. High Strength Nat. Fibre Compos. Constr., Elsevier, 2017: pp. 59–83. https://doi.org/10.1016/B978-0-08-100411-1.00003-0.
  • [23] H.A. Eltahir, W. Xu, X. Lu, C. Li, L. Ren, J. Liu, M.A. Abedalwafa, Prospect and Potential of Adansonia digitata L. (Baobab) Bast Fiber in Composite Materials Reinforced with Natural Fibers. Part1: Fiber Characterization, J. Nat. Fibers. 18 (2021) 2197–2207. https://doi.org/10.1080/15440478.2020.1724234.
  • [24] S. Parbin, N.K. Waghmare, S.K. Singh, S. Khan, Mechanical properties of natural fiber reinforced epoxy composites: A review, Procedia Comput. Sci. 152 (2019) 375–379. https://doi.org/10.1016/j.procs.2019.05.003.
  • [25] ASTM Committee D30, D3039/D3039M: Standard Test Method for Tensile Properties of Polymer Matrix Composite Materials, Annu. B. ASTM Stand. 15 (2017) 1–13. http://scholar.google.com/scholar?hl=en&btnG=Search&q=intitle:Standard+Test+Method+for+Tensile+Properties+of+Polymer+Matrix+Composite+Materials#1.
  • [26] ASTM, D790-03-Standard Test Method for Flexural Properties of Unreinforced and Reinforced Plastics and Electrical Insulation Materials, ASTM Stand. (2015) 1–11. http://scholar.google.com/scholar?hl=en&btnG=Search&q=intitle:Standard+Test+Methods+for+Flexural+Properties+of+Unreinforced+and+Reinforced+Plastics+and+Electrical+Insulating+Materials#0.
  • [27] ASTM standard, ASTM D 5229– 92 – Standard Test Method for Moisture Absorption Properties and Equilibrium Conditioning of Polymer Matrix Composite Materials, Annu. B. ASTM Stand. 92 (2010) 1–13.
  • [28] D. Zindani, K. Kumar, J. Paulo Davim, Mechanical Behavior of Epoxy-Based Green Composites, in: 2019: pp. 81–90. https://doi.org/10.1007/978-981-13-6019-0_6.
  • [29] P. Turla, S.S. Kumar, P.H. Reddy, K.C. Shekar, Processing and Flexural Strength of Carbon Fiber and Glass Fiber Reinforced Epoxy-Matrix Hybrid Composite, Int. J. Eng. Res. Technol. 3 (2014) 394–398. https://www.researchgate.net/profile/Sampath_Surae2/publication/311562123_Processing_and_Flexural_Strength_of_Carbon_Fiber_and_Glass_Fiber_Reinforced_Epoxy-Matrix_Hybrid_Composite/links/584ce23208aeb989251f7b93.pdf.
  • [30] R. Várdai, T. Lummerstorfer, C. Pretschuh, M. Jerabek, M. Gahleitner, A. Bartos, J. Móczó, J. Anggono, B. Pukánszky, Improvement of the impact resistance of natural fiber–reinforced polypropylene composites through hybridization, Polym. Adv. Technol. 32 (2021) 2499–2507. https://doi.org/10.1002/pat.5280.
  • [31] K. Prakash, Investigation of Tensile, Impact and Moisture Properties of Abaca Natural Polymer Reinforced Composites, Int. J. Eng. Res. Technol. 8 (2017) 799–805. http://www.ijser.org.
  • [32] A.A. Klyosov, Wood-Plastic Composites, John Wiley & Sons, Inc., Hoboken, NJ, USA, 2007. https://doi.org/10.1002/9780470165935.
  • [33] R. Jeyapragash, V. Srinivasan, S. Sathiyamurthy, Mechanical properties of natural fiber/particulate reinforced epoxy composites - A review of the literature, Mater. Today Proc. 22 (2020) 1223–1227. https://doi.org/10.1016/j.matpr.2019.12.146.
  • [34] M. Bosquetti, A.L. da Silva, E.C. Azevedo, L.F. Berti, Analysis of the Mechanical Strength of Polymeric Composites Reinforced with Sisal Fibers, J. Nat. Fibers. 18 (2021) 105–110. https://doi.org/10.1080/15440478.2019.1612310.
  • [35] E. Sarikaya, H. Çallioğlu, H. Demirel, Production of epoxy composites reinforced by different natural fibers and their mechanical properties, Compos. Part B Eng. 167 (2019) 461–466. https://doi.org/10.1016/j.compositesb.2019.03.020.
  • [36] G.U. Raju, S. Kumarappa, V.N. Gaitonde, Mechanical and physical characterization of agricultural waste reinforced polymer composites, J. Mater. Environ. Sci. 3 (2012) 907–916.
  • [37] R. Prithivirajan, S. Jayabal, G. Bharathiraja, Bio-based composites from waste agricultural residues: Mechanical and morphological properties, Cellul. Chem. Technol. 49 (2015) 65–68.
  • [38] R. Panneerdhass, A. Gnanavelbabu, K. Rajkumar, Mechanical properties of luffa fiber and ground nut reinforced epoxy polymer hybrid composites, Procedia Eng. 97 (2014) 2042–2051. https://doi.org/10.1016/j.proeng.2014.12.447.
  • [39] G. Bharathiraja, S. Jayabal, S. Kalyana Sundaram, Gradient-based intuitive search intelligence for the optimization of mechanical behaviors in hybrid bioparticle-impregnated coir-polyester composites, J Vinyl Addit. Technol. 23 (2017) 275–283. https://doi.org/10.1002/vnl.21511.
  • [40] G. Bharathiraja, S. Jayabal, S. Kalyana Sundaram, S. Rajamuneeswaran, B.H. Manjunath, Mechanical Behaviors of Rice Husk and Boiled Egg Shell Particles Impregnated Coir-Polyester Composites, Macromol. Symp. 361 (2016) 136–140. https://doi.org/10.1002/masy.201400245.
  • [41] N. Saba, M. Jawaid, O.Y. Alothman, M.T. Paridah, A. Hassan, Recent advances in epoxy resin, natural fiber-reinforced epoxy composites and their applications, J. Reinf. Plast. Compos. 35 (2016) 447–470. https://doi.org/10.1177/0731684415618459.
Uwagi
Opracowanie rekordu ze środków MEiN, umowa nr SONP/SP/546092/2022 w ramach programu "Społeczna odpowiedzialność nauki" - moduł: Popularyzacja nauki i promocja sportu (2022-2023).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-8bf79401-8dca-4e64-8005-dddc558e23d3
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.