PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Properties of rubber-like materials and their blends in wide range of temperatures – experimental and numerical study

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
Elastomers are widely used in many industries. Their use requires thorough knowledge of their strength and stiffness parameters over a wide temperature range. However, determination of the parameters of such materials is still a challenge. Therefore, the paper presents research methodology allowing determination of the properties of rubber-like materials in a wide range of stretch and temperatures (from +50°C to 25°C) by using the example of styrene-butadiene rubber (SBR) and natural rubber (NR) elastomers. Additionally, two blends, chloroprene rubber/nitrile-butadiene rubber (CR/NBR) and NR/SBR blends, were also considered. Based on physical premises, a polynomial and Arruda–Boyce hyperelastic constitutive models parameters were determined using two different methods, namely curve-fitting and the successive response surface method.
Rocznik
Strony
317--332
Opis fizyczny
Bibliogr. 49 poz., rys., tab., wykr.
Twórcy
  • Faculty of Mechanical Engineering, Military University of Technology, ul. gen. Sylwestra Kaliskiego 2, 00-908 Warszawa, Poland
  • Faculty of Mechanical Engineering, Military University of Technology, ul. gen. Sylwestra Kaliskiego 2, 00-908 Warszawa, Poland
  • Faculty of Mechatronics and Aeronautics, Military University of Technology, ul. gen. Sylwestra Kaliskiego 2, 00-908 Warszawa, Poland
  • Faculty of Mechanical Engineering, Military University of Technology, ul. gen. Sylwestra Kaliskiego 2, 00-908 Warszawa, Poland
  • Military Institute of Armament Technology, ul. Wyszyńskiego, 05-220 Zielonka, Poland
  • Faculty of Mechanical Engineering, Military University of Technology, ul. gen. Sylwestra Kaliskiego 2, 00-908 Warszawa, Poland
Bibliografia
  • 1. Li X, Dong Y, Li Z, Xia Y. Experimental study on the temperature dependence of hyperelastic behavior of tire rubbers under moderate finite deformation. Rubber Chem Technol. 2011 Jun 1;84(2):215–28.
  • 2. Gordon M. The Physics of Rubber Elasticity (Third Edition). L. R. G. Treloar, Clarendon Press, Oxford. 1975 pp. xii + 370. Br Polym J. 1976 Mar;8(1):39–39.
  • 3. Bell CLM, Stinson D, Thomas AG. Measurement of Tensile Strength of Natural Rubber Vulcanizates at Elevated Temperature. Rubber Chem Technol. 1982 Mar 1;55(1):66–75.
  • 4. Stevenson A. The influence of low-temperature crystallization on the tensile elastic modulus of natural rubber. J Polym Sci Polym Phys Ed. 1983 Apr;21(4):553–72.
  • 5. D20 Committee. Test Method for Brittleness Temperature of Plastics and Elastomers by Impact [Internet]. ASTM International; [cited 2023 May 29]. http://www.astm.org/cgi-bin/resolver.cgi?D746-20
  • 6. Hussein M. Effects of strain rate and temperature on the mechanical behavior of carbon black reinforced elastomers based on butyl rub-ber and high molecular weight polyethylene. Results Phys. 2018 Jun;9:511–7.
  • 7. Barlow C, Jayasuriya S, Suan Tan C. The World Rubber Industry [Internet]. 0 ed. Routledge; 2014 [cited 2023 May 29]. https://www.taylorfrancis.com/books/9781317829133
  • 8. McKeen LW. Elastomers and Rubbers. In: The Effect of UV Light and Weather on Plastics and Elastomers [Internet]. Elsevier; 2019 [cited 2023 May 29]. p. 279–359. https://linkinghub.elsevier.com/retrieve/pii/B9780128164570000101
  • 9. Ramesan MT, Anil Kumar T. Preparation And Properties Of Different Functional Group Containing Styrene Butadiene Rubber. J Chil Chem Soc [Internet]. 2009 [cited 2023 May 29];54(1). http://www.scielo.cl/scielo.php?script=sci_arttext&pid=S0717-97072009000100006&lng=en&nrm=iso&tlng=en
  • 10. Chandrasekaran VC. Rubbers, Chemicals and Compounding for ‘O’ Rings and Seals. In: Rubber Seals for Fluid and Hydraulic Systems [Internet]. Elsevier; 2010 [cited 2023 May 29]. p. 57–69. https://linkinghub.elsevier.com/retrieve/pii/B9780815520757100061
  • 11. Guo L, Huang G, Zheng J, Li G. Thermal oxidative degradation of styrene-butadiene rubber (SBR) studied by 2D correlation analysis and kinetic analysis. J Therm Anal Calorim. 2014 Jan;115(1):647–57.
  • 12. Kurian T, Mathew NM. Natural Rubber: Production, Properties and Applications. In: Kalia S, Avérous L, editors. Biopolymers [Internet]. Hoboken, NJ, USA: John Wiley & Sons, Inc.; 2011 [cited 2023 May 29]. p. 403–36. https://onlinelibrary.wiley.com/doi/10.1002/9781118164792.ch14
  • 13. Kobayashi S, Müllen K, editors. Encyclopedia of Polymeric Nano-materials [Internet]. Berlin, Heidelberg: Springer Berlin Heidelberg; 2015 [cited 2023 May 29]. http://link.springer.com/10.1007/978-3-642-29648-2
  • 14. P M, Te M. Natural Rubber and Reclaimed Rubber Composites–A Systematic Review. Polym Sci [Internet]. 2016 [cited 2023 May 29];2(1). http://polymerscience.imedpub.com/natural-rubber-and-reclaimed-rubber-compositesa-systematic-review.php?aid=11066
  • 15. Chandrasekaran C. Anticorrosive rubber lining: a practical guide for plastics engineers. Oxford: Elsevier; 2017. 266 p. (Plastics design li-brary).
  • 16. Thomas S, editor. Progress in rubber nanocomposites. Amsterdam: Elsevier; 2017. 574 p. (Woodhead Publishing series in composites science and engineering).
  • 17. Huang Y, Li Y, Zhao H, Wen H. Research on constitutive models of hydrogenated nitrile butadiene rubber for packer at different tempera-tures. J Mech Sci Technol. 2020 Jan;34(1):155–64.
  • 18. Bauccio M, American Society for Metals, editors. ASM metals refer-ence book. 3rd ed. Materials Park, Ohio: ASM International; 1993.
  • 19. Ismail MN, El-Sabbagh SH, Yehia AA. Fatigue and Mechanical Properties of NR/SBR and NR/NBR Blend Vulcanizates. J Elasto-mers Plast. 1999 Jul;31(3):255–70.
  • 20. Ward IM, Sweeney J. Mechanical Properties of Solid Polymers: Third Edition [Internet]. 1st ed. Wiley; 2012 [cited 2023 May 29]. https://onlinelibrary.wiley.com/doi/book/10.1002/9781119967125
  • 21. Copley BC. Tackification Studies of Natural Rubber/Styrene-Butadiene Rubber Blends. Rubber Chem Technol. 1982 May 1;55(2):416–27.
  • 22. Zeng X, Li G, Zhu J, Sain M, Jian R. NBR/CR‐Based High‐Damping Rubber Composites Containing Multiscale Structures for Tailoring Sound Insulation. Macromol Mater Eng. 2023 Feb;308(2):2200464.
  • 23. Tobajas R, Ibartz E, Gracia L. A comparative study of hypere-lastic constitutive models to characterize the behavior of a polymer used in automotive engines. In: Proceedings of 2nd Interna-tional Electronic Conference on Materials [Internet]. Sciforum.net: MDPI; 2016 [cited 2023 May 29]. p. A002. http://sciforum.net/conference/ecm-2/paper/3398
  • 24. Saha S, Bal S. Detailed study of dynamic mechanical analysis for nanocomposites. Emerg Mater Res. 2019 Sep 1;8(3):408–17.
  • 25. Jose Chirayil C, Abraham J, Kumar Mishra R, George SC, Thomas S. Instrumental Techniques for the Characterization of Nanoparticles. In: Thermal and Rheological Measurement Techniques for Nano-materials Characterization [Internet]. Elsevier; 2017.. https://linkinghub.elsevier.com/retrieve/pii/B9780323461399000013
  • 26. Gill P, Moghadam TT, Ranjbar B. Differential scanning calorimetry techniques: applications in biology and nanoscience. J Biomol Tech JBT. 2010 Dec;21(4):167–93.
  • 27. Leyva-Porras C, Cruz-Alcantar P, Espinosa-Solís V, Martínez-Guerra E, Piñón-Balderrama CI, Compean Martínez I, et al. Application of Differential Scanning Calorimetry (DSC) and Modulated Differential Scanning Calorimetry (MDSC) in Food and Drug Industries. Poly-mers. 2019 Dec 18;12(1):5.
  • 28. Gallagher P. K., Brown M. E., Kemp R. B. Handbook of Thermal Analysis and Calorimetry. Amsterdam [Netherlands] ; New York: Elsevier; 1998.
  • 29. Loos K, Aydogdu AB, Lion A, Johlitz M, Calipel J. Strain-induced crystallisation in natural rubber: a thermodynamically consistent model of the material behaviour using a serial connection of phases. Contin Mech Thermodyn. 2021 Jul;33(4):1107–40.
  • 30. Wood L. A.,, Bekkedahl N. Crystallization of Unvulcanized Rubber at Different Temperatures. Journal of Applied Physics 17. 1946;362–75.
  • 31. Doherty WOS, Leè KL, Treloar LRG. Non-Gaussian effects in sty-rene-butadiene rubber: Non-Gaussian effects in styrene-butadiene rubber. Br Polym J. 1980 Mar;12(1):19–23.
  • 32. Schieppati J, Schrittesser B, Wondracek A, Robin S, Holzner A, Pinter G. Temperature impact on the mechanical and fatigue behav-ior of a non-crystallizing rubber. Int J Fatigue. 2021 Mar;144:106050.
  • 33. Mooney M. A Theory of Large Elastic Deformation. J Appl Phys. 1940 Sep;11(9):582–92.
  • 34. Large elastic deformations of isotropic materials IV. further develop-ments of the general theory. Philos Trans R Soc Lond Ser Math Phys Sci. 1948 Oct 5;241(835):379–97.
  • 35. Peddini SK, Bosnyak CP, Henderson NM, Ellison CJ, Paul DR. Nanocomposites from styrene–butadiene rubber (SBR) and multiwall carbon nanotubes (MWCNT) part 2: Mechanical properties. Polymer. 2015 Jan;56:443–51.
  • 36. Tzounis L, Debnath S, Rooj S, Fischer D, Mäder E, Das A, et al. High performance natural rubber composites with a hierarchical rein-forcement structure of carbon nanotube modified natural fibers. Ma-ter Des. 2014 Jun;58:1–11.
  • 37. Kondyurin A, Eliseeva A, Svistkov A. Bound (“Glassy”) Rubber as a Free Radical Cross-linked Rubber Layer on a Carbon Black. Materi-als. 2018 Oct 16;11(10):1992.
  • 38. Fröhlich J, Niedermeier W, Luginsland HD. The effect of filler–filler and filler–elastomer interaction on rubber reinforcement. Compos Part Appl Sci Manuf. 2005 Apr;36(4):449–60.
  • 39. Mechanics of Solid Polymers [Internet]. Elsevier; 2015. https://linkinghub.elsevier.com/retrieve/pii/C20130154931
  • 40. Darijani H, Naghdabadi R, Kargarnovin MH. Hyperelastic materials modelling using a strain measure consistent with the strain energy postulates. Proc Inst Mech Eng Part C J Mech Eng Sci. 2010 Mar 1;224(3):591–602.
  • 41. Yeoh OH. Characterization of Elastic Properties of Carbon-Black-Filled Rubber Vulcanizates. Rubber Chem Technol. 1990 Nov 1;63(5):792–805.
  • 42. Arruda EM, Boyce MC. A three-dimensional constitutive model for the large stretch behavior of rubber elastic materials. J Mech Phys Solids. 1993 Feb;41(2):389–412.
  • 43. Treloar LRG. The elasticity of a network of long-chain molecules—II. Trans Faraday Soc. 1943;39(0):241–6.
  • 44. Zhang MG, Cao YP, Li GY, Feng XQ. Spherical indentation method for determining the constitutive parameters of hyperelastic soft mate-rials. Biomech Model Mechanobiol. 2014 Jan;13(1):1–11.
  • 45. Large elastic deformations of isotropic materials VII. Experiments on the deformation of rubber. Philos Trans R Soc Lond Ser Math Phys Sci. 1951 Apr 24;243(865):251–88.
  • 46. Hallquist, J.O. Ls-Dyna. Material Manual. 2005;
  • 47. Stander N, Craig K.J, Reichert R. Material identification in structural optimization using response surfaces. Struct Multidiscip Optim. 2005 Feb;29(2):93–102.
  • 48. Snyman JA. The LFOPC leap-frog algorithm for constrained optimi-zation. Comput Math Appl. 2000 Oct;40(8–9):1085–96.
  • 49. Mullerschön H, Thiele M. Optimization of an Adaptive Restraint System Using LS-OPT and Visual Exploration of the Design Space Using D-SPEX. 2006;
Uwagi
Opracowanie rekordu ze środków MEiN, umowa nr SONP/SP/546092/2022 w ramach programu "Społeczna odpowiedzialność nauki" - moduł: Popularyzacja nauki i promocja sportu (2022-2023).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-8a696c7c-6c12-423c-a039-6aa99187a334
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.