PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Digital twin-oriented dynamic optimization of multi-process route based on improved hybrid ant colony algorithm

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
To improve the dynamic adaptability and flexibility of the process route during manufacturing, a dynamic optimization method of the multi-process route based on an improved ant colony algorithm driven by digital twin is proposed. Firstly, based on the analysis of the features of the manufacturing part, the machining methods of each process are selected, and the fuzzy precedence constraint relationship between machining metas and processes is constructed by intuitionistic fuzzy information. Then, the multi-objective optimization function driven by the digital twin is established with the optimization objectives of least manufacturing cost and lowest carbon emission, also the ranking of processing methods is optimized by an improved adaptive ant colony algorithm to seek the optimal processing sequence. Finally, the transmission shaft of some equipment is taken as an engineering example for verification analysis, which shows that this method can obtain a process route that gets closer to practical production.
Rocznik
Strony
art. no. e148875
Opis fizyczny
Bibliogr. 22 poz., rys., tab.
Twórcy
  • Chongqing University, Chongqing, China
  • Chongqing School, University of Chinese Academy of Sciences, Chongqing, China
autor
  • Chongqing Institute of Green and Intelligent Technology, Chinese Academy of Sciences, Chongqing, China
autor
  • College of Computer Science and Engineering, Chongqing University of Technology, Chongqing, China
Bibliografia
  • [1] D.L. Olson, D.S. Wu, S.L. Yang, and J.H. Lambert, “Complex product manufacturing in the intelligence-connected era,” Int. J. Prod. Res., vol. 57, no.21, pp. 6702–6704, 2019, doi: 10.1080/00207543.2019.1645442.
  • [2] D.C. Zhou and L. Zeng, “Intelligent scheduling method oriented to multi-varieties and small-batch production mode,” Appl. Mech. Mater., vol. 263, pp. 1269–1274, 2013, doi: 10.4028/www.scientific.net/AMM.263-266.1269.
  • [3] S.P. Leo Kumar, “Knowledge-based expert system in manufacturing planning: state-of-the-art review,”. Int. J. Prod. Res., vol. 57, no. 15–16, pp. 4766–4790, 2019, doi: 10.1080/00207543.2018.1424372.
  • [4] Y. Feng, Y. Gao, G. Tian, Z. Li, H. Hu, and H. Zheng, “Flexible Process Planning and End-of-Life Decision-Making for Product Recovery Optimization Based on Hybrid Disassembly,” IEEE Trans. Auto. Sci. Eng., vol. 16, no. 1, pp. 311–326, 2019, doi: 10.1109/TASE.2018.2840348.
  • [5] C. Zhang, H. Huang, L. Zhang, and Z.F. Liu, “Semi-quantitative method for task planning in product eco-design,” Int. J. Prod. Res., vol. 57, no. 7, pp. 2263–2280, 2019, doi: 10.1080/00207543.2018.1514474.
  • [6] E. Jafarian, J. Razmi, and M.F. Baki, “A flexible programming approach based on intuitionistic fuzzy optimization and geometric programming for solving multi-objective nonlinear programming problems,” Expert Syst. Appl., vol. 93, no. 3, pp. 245–256, 2018, doi: 10.1016/j.eswa.2017.10.030.
  • [7] H. Liu and N. Li, “Application of self-adaptive ant colony algorithm in machine technology manufacturing process route optimization,” Acad. J. Manu. Eng., vol. 15, no. 1, pp. 11–16, 2017.
  • [8] W.H. Li and W. Liu. “Gear incipient fault diagnosis using graph theory and transductive support vector machine,” J. Mech. Eng., vol. 46, no. 23, pp. 82–88, 2010, doi: 10.3901/JME.2010.23.082.
  • [9] Q. Zhang, S. Li, Y. Lei, and X.D. Zhang, “Newton-conjugate gradient (CG) augmented Lagrangian method for path constrained dynamic process optimization,” J. Control Theory Appl., vol. 10, no. 2, pp. 223–228, 2012, doi: 10.1007/s11768-012-0032-z.
  • [10] C.L. Li, R. Mo, Z.Y. Chang, H.C. Yang, N. Wan, and Y. Xiang, “A multifactor decision-making method for process route planning,” Int. J. Adv. Manuf. Technol., vol. 90, no. 5–8, pp. 1789–1808, 2017, doi: 10.1007/s00170-016-9502-7.
  • [11] L. Krishna and P.J. Srikanth, “Evaluation of environmental impact of additive and subtractive manufacturing processes for sustainable manufacturing – ScienceDirect,” Mater. Today-Proc., vol. 45, no. 2, pp. 3054–3060, 2021, doi: 10.1016/j.matpr.2020.12.060.
  • [12] R.J. Kuo and F.E. Zulvia, “Hybrid genetic ant colony optimization algorithm for capacitated vehicle routing problem with fuzzy demand – A case study on garbage collection system.” 2017 4th International Conference on Industrial Engineering and Applications (ICIEA), Nagoya, Japan, 2017, pp. 244–248, doi: 10.1109/IEA.2017.7939215.
  • [13] H. Zarei, M. Yousefi Khoshbakht, and E. Khorram. “A hybrid modified meta-heuristic algorithm for solving the traveling salesman problem,” J. Ind. Sys. Eng., vol. 9, no. 3, pp. 57–69, 2016, doi: 20.1001.1.17358272.2016.9.3.4.4.
  • [14] F. Khoshahval and A. Fadaei, “Application of a hybrid method based on the combination of genetic algorithm and Hopfield neural network for burnable poison placement,” Ann. Nucl. Energy, vol. 47, pp. 62–68, 2012, doi: 10.1016/j.anucene.2012.04.020.
  • [15] X.G. Ming and K.L. Mak, “A hybrid Hopfield network-genetic algorithm approach to optimal process plan selection,” Int. J. Prod. Res., vol. 38, no. 8, pp. 1823–1839, 2000, doi: 10.1080/002075400188618.
  • [16] K.T. Atanassov, “Intuitionistic fuzzy sets,” Fuzzy Set. Syst., vol. 20, no. 1, pp. 87–96, 1986, doi: 10.1016/S0165-0114(86)80034-3.
  • [17] L. Zhang and Y. Zhang, “Study and application of parametric feature modeling technology for shaft part,” J. Appl. Sci., vol. 13, no. 13, pp. 2606–2609, 2013, doi: 10.3923/jas.2013.2606.2609.
  • [18] W. Wei, Z. Tian, C. Peng, A. Liu, and Z.N. Zhang, “Product family flexibility design method based on hybrid adaptive ant colony algorithm,” Soft Comput., vol. 23, no. 20, pp. 10509–10520, 2019, doi: 10.1007/s00500-018-3622-y.
  • [19] G.J. Wang, Y.Y. He, “Intuitionistic fuzzy sets and L-fuzzy sets,” Fuzzy Set. Syst., vol. 110, no. 2, pp. 271–274, 2000, doi: 10.1016/S0165-0114(98)00011-6.
  • [20] Z. Dong, “An approach to multiple attribute decision making with intuitionistic fuzzy information and its application to software quality evaluation,” IOP Conf. Ser. Mater. Sci. Eng., vol. 740, no. 1, p. 12202, 2020, doi: 10.1088/1757-899X/740/1/012202.
  • [21] M. Dorigo, G.D. Caro, and L.M. Gambardella, “Ant algorithm for discrete optimization,” Artif. Life, vol. 5, no. 2, pp. 137–172, 1999, doi: 10.1162/106454699568728.
  • [22] B. Shi and Y. Zhang, “A novel algorithm to optimize the energy consumption using IoT and based on ant colony algorithm,” Energies, vol. 14, no. 6, p. 1709, 2021, doi: 10.3390/en14061709.
Uwagi
Opracowanie rekordu ze środków MNiSW, umowa nr SONP/SP/546092/2022 w ramach programu "Społeczna odpowiedzialność nauki" - moduł: Popularyzacja nauki i promocja sportu (2024).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-8a416027-172d-45f2-916e-6592b7a20fc6
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.