PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Benthic diffusive fluxes of organic and inorganic carbon, ammonium and phosphates from deep water sediments of the Baltic Sea

Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
In this study, Baltic Sea sediments, as a source of dissolved inorganic carbon (DIC), dissolved organic carbon (DOC), ammonium (NH4+), and phosphates (PO43-), were investigated based on samples obtained in 2017 and 2018, shortly after a sequence of inflows from the North Sea that occurred between 2014 and 2017. Two different data sets (I and II) were used to assess benthic diffusive fluxes and thus elucidate both the temporal conditions at the time of sampling (data set I) and the diffusion potential of the sediments (data set II). The estimated fluxes were characterized by a high spatial variability within the whole Baltic Sea and ranged between −0.01 and 3.33 mmol m−2 d−1 for DIC, −0.02 and 0.44 mmol m−2 d−1 for DOC, −40.5 and 1370.1 µmol m−2 d−1 for NH4+, and −5.9 and 60.9 µmol m−2 d−1 for PO43-. The estimated benthic diffusive fluxes indicated a high potential for DIC, DOC, NH4+, and PO43- release from Baltic Sea sediments. The high O2 concentrations in the water column of the Gulf of Bothnia together with major Baltic inflows (MBIs) bringing oxygenated seawater to the Baltic Proper and to some extent the Eastern Gotland Basin regulate the amounts of chemicals released from the sediment. Our study showed that a sequence of inflows has greater impact on the diminution of diffusive fluxes than does a single MBI and that the sediments of the Baltic Proper, even under the influence of inflows, are an important source of C, N, and P (159 kt yr−1 for DIC+DOC, 6.3 kt yr−1 for N- NH4+ and 3.7 kt yr−1 for P-PO43-) that should be considered in regional budget estimations.
Czasopismo
Rocznik
Strony
370--384
Opis fizyczny
Bibliogr. 63 poz., rys., tab., wykr.
Twórcy
  • Institute of Oceanology, Polish Academy of Sciences, Sopot, Poland
  • Institute of Oceanology, Polish Academy of Sciences, Sopot, Poland
  • Institute of Oceanography, University of Gdańsk, Gdynia, Poland
  • Institute of Oceanology, Polish Academy of Sciences, Sopot, Poland
  • Institute of Oceanology, Polish Academy of Sciences, Sopot, Poland
Bibliografia
  • [1] Ahtiainen, H., Artell, J., Elmgren, R., Hasselström, L., Håkansson, C., 2014. Baltic Sea nutrient reductions — What should we aim for? J. Environ. Manage. 145, 9-23. https://doi.org/10.1016/j.jenvman.2014.05.016.
  • [2] Arndt, S., Jørgensen, B. B., LaRowe, D. E., Middelburg, J. J., Pancost, R. D., Regnier, P., 2013. Quantyfying the degradation of organic matter in marine sediments: A review and synthesis. Earth-Sci. Rev. 123, 53-86. https://doi.org/10.1016/j.earscirev.2013.02.008.
  • [3] Benner, R., 2002. Chapter 3 — Chemical composition and reactivity. In: Dennis, A. H., Craig, A. C. (Eds.), Biogeochemistry of Marine Dissolved Organic Matter. Academic Press, San Diego, 59-90.
  • [4] Berelson, W. M., McManus, J., Severmann, S., Rollins, N., 2019. Benthic fluxes from hypoxia-influenced Gulf of Mexico sediments: Impact on bottom water acidification. Mar. Chem. 209, 94-106. https://doi.org/10.1016/j.marchem.2019.01.004.
  • [5] Boudreau, B. P., 1997. Diagenetic models and their implementation: Modelling transport and reactions in aquatic sediments. Springer-Verlag, Berlin-Heidelberg-New York.
  • [6] Brodecka-Goluch, A., Łukawska-Matuszewska, K., 2018. Pore water dissolved organic and inorganic carbon in relation to methane occurrence in sediments of the Gdańsk basin (southern Baltic Sea). Cont. Shelf Res. https://doi.org/10.1016/j.csr.2018.08.008.
  • [7] Burdige, D. J., Komada, T., Magen, C., Chanton, J. P., 2016. Modeling studies of dissolved organic matter cycling in Santa Barbara Basin (CA, USSA) sediments. Geochim. Cosmochim. Acta 195, 100-119 http://dx.doi.org/10.1016/j.gca.2016.09.007.
  • [8] Carpenter, S. R., 2005. Eutrophication of aquatic ecosystems: biostability and soil phosphorus. Proc. Natl. Acad. Sci. U.S.A 102 (29), 10002-10005. https://doi.org/10.1073/pnas.0503959102.
  • [9] Christoffersen, P. L., Christiansen, C., Jensen, J. B., Leipe, T., Hille, S., 2007. Depositional conditions and organic matter distribution in the Bornholm Basin, Baltic Sea. Geo-Mar. Lett. 27, 325-338.
  • [10] Conley, D. J., Humborg, C., Rahm, L., Savchuk, O. P., Wulff, F., 2002. Hypoxia in the Baltic Sea and Basin-Scale Changes in Phosphorus Biogeochemistry. Environ. Sci. Tech. 36, 5315-5320. https://doi.org/10.1021/es025763w.
  • [11] Conley, D. J., Paerl, H. W., Howarth, R. W., Boesch, D. F., Seitzinger, S. P., Havens, K. E., Lancelot, C., Likens, G. E., 2009. Controlling Eutrophication: Nitrogen and Phosphorus. Science 323, 1014-1015. https://doi.org/10.1126/science.1167755.
  • [12] Dalsgaard, T., Thamdrup, B., 2002. Factors controlling anaerobic ammonium oxidation with nitrite in marine sediments. Appl. Environ. Microbiol. 68 (8), 3802-3808. https://doi.org/10.1128/AEM.68.8.3802-3808.2002.
  • [13] Denis, L., Grenz, C., 2003. Spatial variability in oxygen and nutrient fluxes at the sediment-water interface on the continental shelf in the Gulf of Lions (NW Mediterranean Sea), Oceanol. Acta 26, 373-389. https://doi.org/10.1016/S0399-1784(03)00017-3.
  • [14] Eckhell, J., Jonsson, P., Meilli, M., Carman, R., 2000. Storm influence on the accumulation and lamination of sediments in the deep areas of the north-western Baltic Proper. Ambio 29, 238-245.
  • [15] Emerson, S., Hedges, J. I., 1988. Processes controlling the organic carbon content of open ocean sediments. Paleoceanography 3, 621-634. https://doi.org/10.1029/PA003i005p00621.
  • [16] Fellman, J. B., D’Amore, D. V., Hood, E., 2008. An evaluation of freezing as a preservation technique for analysing dissolved organic C, N and P in surface water samples. Sci. Total Environ. 392, 305-312. https://doi.org/10.1016/j.scitotenv.2007.11.027.
  • [17] Freitas, F. S., Hendry, K. R., Henley, S. F., Faust, J. C., Tessin, A. C., Stevenson, M. A., Abbott, G. D., März, C., Arndt, S., 2020. Benthic-pelagic coupling in the Barents Sea: an integrated data-model framework. Phil. Trans. R. Soc. A. 378, 20190359. https://doi.org/10.1098/rsta.2019.0359.
  • [18] Gilbert, D., Sundby, B., Gobeil, C., Mucci, A., Tremblay, G. H. A., 2005. A seventy-two-year record of diminishing deep-water oxygen in the St. Lawrence estuary: The northwest Atlantic connection. Limnol. Oceanogr. 50, 1657-1666.
  • [19] Glud, R. N., 2008. Oxygen dynamics of marine sediments. Mar. Biol. Res. 4, 243-289. https://doi.org/10.1080/17451000801888726.
  • [20] Graca, B., Burska, D., 2011. Organic Carbon and Nutrients in the Baltic Sea Sediments. In: Uścinowicz, S. (Ed.), Geochemistry of Baltic Sea surface sediments. Polish Geological Institute-National Research Institute, Warsaw, 172-209.
  • [21] Graca, B., Witek, Z., Burska, D., Białkowska, I., Łukawska-Matuszewska, K., Bolałek, J., 2006. Pore water phosphate and ammonia below the permanent halocline in the south-eastern Baltic Sea and their benthic fluxes under anoxic conditions. J. Mar. Syst. 63, 141-154. https://doi.org/10.1016/j.jmarsys.2006.06.003.
  • [22] Grasshoff, K., Kremling, K., Ehrhardt, M., 1999. Methods of Seawater Analysis. Wiley-VCH Verlag. https://doi.org/10.1002/9783527613984.
  • [23] Gustafsson, E., Savchuk, O. P., Gustafsson, B. G., Müller-Karulis, B., 2017. Key processes in the coupled carbon, nitrogen, and phosphorus cycling of the Baltic Sea. Biogeochemistry 134, 301-317. https://doi.org/10.1007/s10533-017-0361-6.
  • [24] Hall, P. O., Almroth Rosell, E., Bonaglia, S., Dale, A. W., Hylén, A., Kononets, M., Nilsson, M., Sommer, S., van de Velde, S., Viktorsson, L., 2017. Influence of natural oxygenation of Baltic proper deep water on benthic recycling and removal of phosphorus, nitrogen, silicon and carbon. Front. Mar. Sci. 4, 27. https://doi.org/10.3389/fmars.2017.00027.
  • [25] Hannig, M., Lavik, G., Kuypers, M. M. M., Woebken, D., Martens-Habbena, W., Jürgens, K., 2007. Shift from denitrification to anammox after inflow events in the central Baltic Sea. Limnol. Oceanogr. 52 (4), 1336-1345. https://doi.org/10.2307/4502294.
  • [26] Hansson, M., Viktorsson, L., Andersson, L., 2017. Oxygen Survey in the Baltic Sea 2017 — Extent of Anoxia and Hypoxia, 1960-2017. Rep. Oceanogr. 63 ISSN: 0283-1112 © SMHI.
  • [27] Hedges, J. I., Keil, R. G., Benner, R., 1997. What happens to terrestrial organic matter in the ocean? Org. Geochem 27 (5-6), 195-212. https://doi.org/10.1016/S0146-6380(97)00066-1.
  • [28] HELCOM, 2018. Sources and pathways of nutrients to the Baltic Sea. In: Baltic Sea Environment Proceedings No. 153.
  • [29] Hille, S., Nausch, G., Lepie, T., 2005. Sedimentary deposition and reflux of phosphorus (P) in the Eastern Gotland Basin and their coupling with P concentrations in the water column. Oceanologia 47 (4), 663-679.
  • [30] Hille, S., Leipe, T., Seifert, T., 2006. Spatial variability of recent sedimentation rates in the Eastern Gotland Basin (Baltic Sea). Oceanologia 48, 297-317.
  • [31] Kuliński, K., Pempkowiak, J., 2011. The carbon budget of the Baltic Sea. Biogeosciences 8, 3219-3230. https://doi.org/10.5194/bg-8-3219-2011.
  • [32] Kuliński, K., Schneider, B., Hammer, K., Machulik, U., Schulz-Bull, U., 2014. The influence of dissolved organic matter on the acid-base system of the Baltic Sea. J. Mar. Syst. 132, 106-115. https://doi.org/10.1016/j.jmarsys.2014.01.011.
  • [33] Kuypers, M. M. M., Sliekers, A. O., Lavik, G., Schmid, M., Jøregensen, B. B., Kuenen, J. G., Sinninghe, J. S., Strous, M., Jetten, M. S. M., 2003. Anaerobic ammonium oxidation by annamox bacteria in the Blacka Sea. Nature 422 (6932), 608-611. https://doi.org/10.1038/nature01472.
  • [34] LaRowe, D. E., Arndt, S., Bradley, J. A., Burwicz, E., Dale, A. W., Amend, J. P., 2020. Organic carbon and microbial activity in marine sediments on a global scale throughout the Quaternary. Geochim. Cosmochim. Acta 286, 227-247. https://doi.org/10.1016/j.gca.2020.07.017.
  • [35] Lass, H.-U., Matthaüs, W., Feistel, R., Nausch, G., 2008. General Oceanography of the Baltic Sea. In: Wasmund, N. (Ed.), State and Evolution of the Baltic Sea, 1952-2005: A Detailed 50-Year Survey of Meteorology and Climate, Physics, Chemistry, Biology, and Marine Environment. John Wiley & Sons, 5-43. https://doi.org/10.1002/9780470283134.ch2.
  • [36] Leipe, T., Tauber, F., Vallius, H., Virtasalo, J., Uścinowicz, S., Kowalski, N., Hille, S., Lindgren, S., Myllyvirta, T., 2011. Particulate organic carbon (POC) in surface sediments of the Baltic Sea. Geo-Mar. Lett. 31, 175-188. https://doi.org/10.1007/s00367-010-0223-x.
  • [37] Li, Y.-H., Gregory, S., 1974. Diffusion of ions in sea water and in deep-sea sediments. Geochim. Cosmochim. Acta 38, 703-714.
  • [38] Łukawska-Matuszewska, K., Burska, D., 2011. Phosphate exchange across the sediment-water interface under oxic and hypoxic/anoxic conditions in the southern Baltic Sea. Oceanol. Hydrobiol. Stud. 40 (2), 57-71. https://doi.org/10.2478/s13545-011-0017-4.
  • [39] Łukawska-Matuszewska, K., Kiełczewska, J., 2016. Effects of near-bottom water oxygen concentration on biogeochemical cycling of C, N and S in sediments of the Gulf of Gdańsk (southern Baltic). Cont. Shelf Res. 177, 30-42. https://doi.org/10.1016/j.csr.2016.02.001.
  • [40] Łukawska-Matuszewska, K., Graca, B., 2018. Pore water alkalinity below the permament halocline in the Gdańsk Deep (Baltic Sea) — Concentration variability and benthic fluxes. Mar. Chem. 204, 49-61. https://doi.org/10.1016/j.marchem.2018.05.011.
  • [41] Matthäus, W., Nehring, D., Feistel, R., Nausch, G., Mohrholz, V., Lass, H., 2008. The Inflow of Highly Saline Water into the Baltic Sea. In: Feistel, R., Nausch, G., Wasmund, N. (Eds.), State and Evolution of the Baltic Sea, 1952-2005. John Wiley & Sons, Inc., 265-309. https://doi.org/10.1002/9780470283134.ch10.
  • [42] Meier, H. E. M., Edman, K., Eilola., K., Placke, M., Neumann, T., Andersson, H., Brunnabend, S.-E., Dieterich, C, Frauen, C., Friedland, R., Gröger, M., Gustafsson, B. G., Gustafsson, E., Isaev, A., Kniebusch, M., Kuznetsov, I., Müller-Karulis, B., Naumann, M., Omstedt, A., Ryabchenko, V., Saraia, S., Savchuk, O. P., 2019. Assessment of uncertinties in scenario simualtions of biogeochemical cycles in the Baltic Sea. Front. Mar. Sci. 6, art. 46. https://doi.org/10.3389/fmars.2019.00046.
  • [43] Mohrholz, V., 2018. Major Baltic Inflow Statistics — Revised, Front. Mar. Sci. 22. https://doi.org/10.3389/fmars.2018.00384.
  • [44] Naumann, M., Umlauf, L., Mohrholz, V., Kuss, J., Siegel, H., Waniek, J. J., Schulz-Bull, D. E., 2018. Hydrographic-hydrochemical assessment of the Baltic Sea 2017. Marine Science Reports 107.
  • [45] Naumann, M., Gräwe, U., Mohrholz, V., Kuss, J., Siegel, H., Waniek, J. J., Schulz-Bull, D. E., 2019. Hydrographic-hydrochemical assessment of the Baltic Sea 2018. Mar. Sci. Rep. 110.
  • [46] Nausch, M., Nausch, G., Wasmund, N., Nagel, K., 2008. Phosphorus pool variations and their relation to cyanobacteria development in the Baltic Sea: A three-year study. J. Mar. Syst. 71 (1-2), 99-111. https://doi.org/10.1016/j.jmarsys.2007.06.004.
  • [47] Nebbioso, A., Piccolo, A., 2013. Molecular characterization of dissolved organic matter (DOC): a critical review. Anal. Bioanal. Chem. 405, 109-124. https://doi.org/10.1007/s00216-012-6363-2.
  • [48] Noffke, A., Sommer, S., Dale, A. W., Hall, P. O. J., Pfannkuche, O., 2016. Benthic nutrient fluxes in the Eastern Gotland Basin (Baltic Sea) with particular focus on microbial mat ecosystems. J. Mar. Syst. 158, 1-12. https://doi.org/10.1016/j.jmarsys.2016.01.007.
  • [49] Premuzic, E. T., Benkovitz, C. M., Gaffney, J. S., Walsh, J. J., 1982. The nature and distribution of organic matter in the surface sediments of world oceans and seas. Organic Geochem 4 (2), 63-77. https://doi.org/10.1016/0146-6380(82)90009-2.
  • [50] Puttonen, I., Mattila, J., Jonsson, P., Karlsson, O. M., Kohonen, T., Kotilainen, A., Lukkari, K., Malmaeus, J. M., Rydin, E., 2014. Distribution and estimated release of sediment phosphorus in the northern Baltic Sea archipelagos. Estuar. Coast. Shelf Sci. 145, 9-21. https://doi.org/10.1016/j.ecss.2014.04.010.
  • [51] Savchuk, O. P., Gustafson, B. G., Müller-Karulis, B., 2012. BALTSEM — a marine model for the decision support within the Baltic Sea Region. Technical Report No 7, Baltic Nest Institute, Stockholm University Baltic Sea Centre, 60 pp.
  • [52] Savchuk, O. P., 2018. Large-scale nutrient dynamics in the Baltic Sea, 1970-2016. Front. Mar. Sci. 5, 95. https://doi.org/10.3389/fmars.2018.00095.
  • [53] Seeberg-Elverfeldt, J., Schlüter, M., Feseker, T., Kölling, M., 2005. Rhizon sampling of porewaters near the sediment-water interface of aquatic systems. Limnol. Oceanogr. Methods (8) 3. https://doi.org/10.4319/lom.2005.3.361.
  • [54] Seiter, K., Hensen, C., Schröter, J., Zabel., M., 2004. Organic carbon content in surface sediments — defining regional provinces. Deep Sea Res. Pt. I: Oceanogr. Res. Papers 51 (12), 2001-2026. https://doi.org/10.1016/j.dsr.2004.06.014.
  • [55] Sommer, S., Clemens, D., Yücel, M., Pfannkuche, O., Hall, P. O. J., Almroth-Rosell, E., Schulz-Vogt, N. H., Dale, A. W., 2017. Major bottom water ventilation events do not significantly reduce basin-wide benthic n and p release in the Eastern Gotland Basin (Baltic Sea). Front. Mar. Sci. 4 , art. 18. https://doi.org/10.3389/fmars.2017.00018.
  • [56] Strickland, J. D. H., Parsons, T. R., 1967. A Practical Handbook of Seawater Analysis. Fish. Res. Board Canada Bull., Ottawa 310 pp.
  • [57] Szymczycha, B., Maciejewska, A., Winogradow, A., Pempkowiak, J., 2014. Could submarine groundwater discharge be a significant carbon source to the southern Baltic Sea? Oceanologia 56 (2), 327-347. https://doi.org/10.5697/oc.56-2.327.
  • [58] Thomas, H., Pempkowiak, J., Wulff, F., Nagel, K., 2010. The Baltic Sea. In: Liu, K-K., Atkinson, L., Quinones, R. A., Talaue-McManus, L. (Eds.), Carbon and Nutrient Fluxes in Continental Margins. Springer-Verlag, Berlin, 334-346.
  • [59] Thoms, F., Burmeister, C., Dippner, J. W., Gogina, M., Janas, U., Kendzierska, H., Liskow, I., Voss, M., 2018. Impact of Macrofaunal Communities on the Coastal Filter Function in the Bay of Gdansk. Baltic Sea. Front. Mar. Sci. 5, 201. https://doi.org/10.3389/fmars.2018.00201.
  • [60] Viktorsson, L., Ekeroth, N., Nilsson, M., Kononets, M., Hall, P. O. J., 2013. Phosphorus recycling in sediments of the central Baltic Sea. Biogeosciences 10, 3901-3916. https://doi.org/10.5194/bg-10-3901-2013.
  • [61] Walsh, J. J., 1991. Importance of continental margins in the marine biogeochemical cycling of carbon and nitrogen. Nature 350, 53-55.
  • [62] Winogradow, A., Pempkowiak, J., 2014. Organic carbon burial rates in the Baltic Sea sediments. Esuar. Coast. Shelf Sci. 138, 27-36. https://doi.org/10.1016/j.ecss.2013.12.001.
  • [63] Wulff, F., Rahm, L., Hallin, A.-K., Sandberg, J., 2001. Nutrient Budget Model of the Baltic Sea. In: Wulff, F. V., Rahm, L. A., Larsson, P. (Eds.), A System analysis of the Baltic Sea. Springer-Verlag, Berlin, 354-372.
Uwagi
Opracowanie rekordu ze środków MNiSW, umowa Nr 461252 w ramach programu "Społeczna odpowiedzialność nauki" - moduł: Popularyzacja nauki i promocja sportu (2021).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-89639024-57af-468d-85f1-b5137f37a467
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.