Identyfikatory
Warianty tytułu
Języki publikacji
Abstrakty
Purpose: Complex multifragmentary fractures of the pelvis and lower limb are a major challenge for operative orthopaedic surgery. The successful metallic osteosynthesis of the fractures requires an extensive planning process, which can be dramatically improved with the 3D printed anatomical models – replicas of the bones with high fidelity generated from CT and MRI imaging studies. The models represent the spatial properties of the skeleton with a dimensional error of approximately 8 μm/mm. They can be manufactured easily and with high reproducibility with commercial or open-access software and FDM 3D printing. Orthopaedic surgeons use the preoperative models as a highly accurate physical model of complex fractures and allow them to choose and prepare the optimal operation window, surgical tools, metallic implants, and as a template for recontouring (pre-bending) of fixation plates, which will be used during the surgery. The approach provides a new level of personalisation in operative orthopaedic surgery and significantly reduces the duration of the operation, the amount of blood loss and the intraoperative X-rays. The proper anatomical repositioning of the fracture is achieved at a higher rate in the surgeries, which are planned with 3D-printed anatomical models. The planning of surgical operations with 3D-printed models increases the overall effectiveness of the surgery, reduces the rate of post-surgical complications, and allows for a patient-specific approach. The paper will describe the methods for manufacturing accurate 3D-printed anatomical models representing complex fractures and their application for preoperative planning of orthopaedic operation. Design/methodology/approach: The anatomical 3D models were generated from CT datasets with open-access medical informatics software (3D Slicer) and 3D printed on an FDM 3D printer with minimal thermal deformation (Polylactate, PLA). The finished models were used for preoperative planning of complex orthopaedic operations, including high-energy multifragmentary hip, knee and ankle fractures. The preoperative planning included selecting surgical access, preparing tools and implants, and contouring (pre-bending) metal plates for metallic osteosynthesis. Several parameters, such as operation time, blood loss, intraoperative X-rays, and the achievement of anatomical reduction of the fractures, were observed in order to measure the quality of the operations. bones can be generated from tomographic imaging studies easily and accurately, even with open-source software. They can be utilised as a tool for preoperatively planning complex orthopaedical operations of the lower limb. Using 3D-printed models allows a patient-specific approach, which leads to good anatomical reduction and favourable functional results in complex surgeries regarding the pelvis, acetabulum, tibial plateau, and calcaneus. Practical implications: The methods described in the paper are routinely used for the preoperative planning of complex orthopaedical operations regarding the lower limb. In the future, they will be combined with the implementation of 3D-printed personalised titanium implants to achieve good anatomical reduction even for the most challenging multigragmental fractures. Originality/value: In the paper, we described the technical aspects and clinical considerations for the preoperative planning of complex orthopaedical operations, which can assist engineers and clinicians alike in implementing the useful method in clinical practice.
Wydawca
Rocznik
Tom
Strony
73--85
Opis fizyczny
Bibliogr. 59 poz.
Twórcy
autor
- Department of Anatomy and Cell Biology, Faculty of Medicine, Medical University of Varna (MU-Varna), Marin Drinov str. 55, Varna 9002, Bulgaria
autor
- Department of Orthopaedics and Traumatology, Faculty of Medicine, Medical University of Varna (MU-Varna), Marin Drinov str. 55, Varna 9002, Bulgaria
Bibliografia
- [1] Z. Sun, Y.H. Wong, C.H. Yeong, Patient-Specific 3D-Printed Low-Cost Models in Medical Education and Clinical Practice, Micromachines 14/2 (2023) 464. DOI: https://doi.org/10.3390/mi14020464
- [2] T. Vernon, D. Peckham, The benefits of 3D modelling and animation in medical teaching, Journal of Audiovisual Media in Medicine 25/4 (2002) 142-148. DOI: https://doi.org/10.1080/0140511021000051117
- [3] K. Bliznakova, I. Buliev, Z. Bliznakov, Design and composition of anthropomorphic phantoms, in: Anthropomorphic Phantoms in Image Quality and Patient Dose Optimization, IOP Publishing, London, 2018, 3–1-3–19. DOI: https://doi.org/10.1088/2053- 2563/aae197ch3
- [4] D.G. Alemayehu, Z. Zhang, E. Tahir, D. Gateau, D.-F. Zhang, X. Ma, Preoperative Planning Using 3D Printing Technology in Orthopedic Surgery, BioMed Research International 2021 (2021) 7940242. DOI: https://doi.org/10.1155/2021/7940242
- [5] M. Meng, J. Wang, H. Huang, X. Liu, J. Zhang, Z. Li, 3D printing metal implants in orthopedic surgery: Methods, applications and future prospects, Journal of Orthopaedic Translation 42 (2023) 94-112. DOI: https://doi.org/10.1016/j.jot.2023.08.004
- [6] D. Popescu, D. Laptoiu, R. Marinescu, I. Botezatu, Design and 3D printing customised guides for orthopaedic surgery – lessons learned, Rapid Prototyping Journal 24/5 (2018) 901-913. DOI: https://doi.org/10.1108/RPJ-05-2017-0099
- [7] T.M. Bücking, E.R. Hill, J.L. Robertson, E. Maneas, A.A. Plumb, D.I. Nikitichev, From medical imaging data to 3D printed anatomical models, PLOS ONE 12/5 (2017) e0178540. DOI: https://doi.org/10.1371/journal.pone.0178540
- [8] M. Van Eijnatten, R. Van Dijk, J. Dobbe, G. Streekstra, J. Koivisto, J. Wolff, CT image segmentation methods for bone used in medical additive manufacturing, Medical Engineering and Physics 51 (2018) 6-16. DOI: https://doi.org/10.1016/j.medengphy.2017.10.008
- [9] H. Zhou, S.B. Bhaduri, 3D printing in the research and development of medical devices, in: L. Yang, S.B. Bhaduri, T.J. Webster (eds), Woodhead Publishing Series in Biomaterials, Biomaterials in Translational Medicine, Academic Press, Cambridge, MA, 2019, 269-289. DOI: https://doi.org/10.1016/B978-0-12- 813477-1.00012-8
- [10] A. Tejo-Otero, I. Buj-Corral, F. Fenollosa-Artés, 3D Printing in Medicine for Preoperative Surgical Planning: A Review, Annals of Biomedical Engineering 48/2 (2020) 536-555. DOI: https://doi.org/10.1007/s10439-019-02411-0
- [11] S. Ivanov, P. Valchanov, S. Hristov, D. Veselinov, B. Gueorguiev, Management of Complex Acetabular Fractures by Using 3D Printed Models, Medicina 58/12 (2022) 1854. DOI: https://doi.org/10.3390/medicina58121854
- [12] R. Kikinis, S.D. Pieper, K.G. Vosburgh, 3D Slicer: A Platform for Subject-Specific Image Analysis, Visualization, and Clinical Support, in: F. Jolesz (ed), Intraoperative Imaging and Image-Guided Therapy, Springer, New York, NY, 2014, 277-289. DOI: https://doi.org/10.1007/978-1-4614-7657-3_19
- [13] M. Fogarasi, J.C. Coburn, B. Ripley, Algorithms used in medical image segmentation for 3D printing and how to understand and quantify their performance, 3D Printing in Medicine 8/1 (2022) 18. DOI: https://doi.org/10.1186/s41205-022-00145-9
- [14] W.L. Ng, J. An, C.K. Chua, Process, Material, and Regulatory Considerations for 3D Printed Medical Devices and Tissue Constructs, Engineering 36 (2024) 146-166. DOI: https://doi.org/10.1016/j.eng.2024.01.028
- [15] H.F. Boehm, T.M. Link, Bone imaging: Traditional techniques and their interpretation, Current Osteoporosis Reports 2/2 (2004) 41-46. DOI: https://doi.org/10.1007/s11914-004-0002-6
- [16] T.M. Buzug, Computed Tomography, in: R. Kramme, KP. Hoffmann, R.S. Pozos (eds), Springer Handbook of Medical Technology, Springer Handbooks, Springer, Berlin, Heidelberg, 2011, 311-342. DOI: https://doi.org/10.1007/978-3-540-74658-4_16
- [17] B. Pelvis, CT/CBCT scan protocol. Available from: https://assets-eu-01.kc-usercontent.com/8ff24b0e- 57a3-0157-62d1-fa4ac9734eb5/9c4f85b5-860e-486e- 8d96-4c43d3c3dae8/CT%20Scan%20Protocol%20- %20Bony%20Pelvis%20-%20English%20-%20L- 30579-03.pdf
- [18] J. Van Den Broeck, E. Vereecke, R. Wirix-Speetjens, J. Vander Sloten, Segmentation accuracy of long bones, Medical Engineering and Physics 36/7 (2014) 949-953. DOI: https://doi.org/10.1016/j.medengphy.2014.03.016
- [19] J. Schindelin, I. Arganda-Carreras, E. Frise, V. Kaynig, M. Longair, T. Pietzsch, S. Preibisch, C. Rueden, S. Saalfeld, B. Schmid, J.-Y. Tinevez, D.J. White, V. Hartenstein, K. Eliceiri, P. Tomancak, A. Cardona, Fiji: an open-source platform for biological-image analysis, Nature Methods 9/7 (2012) 676-682. DOI: https://doi.org/10.1038/nmeth.2019
- [20] Invesalius. Available from: https://invesalius.github.io/
- [21] Syngo.viaFrontier. Available from: https://www.siemens-healthineers.com/bg/digital-health-solutions/syngovia-frontier
- [22] M. Mandolini, A. Brunzini, G. Facco, A. Mazzoli, A. Forcellese, A. Gigante, Comparison of Three 3D Segmentation Software Tools for Hip Surgical Planning, Sensors 22/14 (2022) 5242. DOI: https://doi.org/10.3390/s22145242
- [23] Materialise Mimics. Available from: https://www.materialise.com/en/healthcare/mimics-innovation-suite/mimics
- [24] Oqton D2P. Available from: https://oqton.com/d2p/
- [25] G. An, L. Hong, X.-B. Zhou, Q. Yang, M.-Q. Li, X.-Y. Tang, Accuracy and efficiency of computer-aided anatomical analysis using 3D visualisation software based on semi-automated and automated segmentations, Annals of Anatomy - Anatomischer Anzeiger 210 (2017) 76-83. DOI: https://doi.org/10.1016/j.aanat.2016.11.009
- [26] M. Rohm, M. Markmann, J. Forsting, R. Rehmann, M. Froeling, L. Schlaffke, 3D Automated Segmentation of Lower Leg Muscles Using Machine Learning on a Heterogeneous Dataset, Diagnostics 11/10 (2021) 1747. DOI: https://doi.org/10.3390/diagnostics11101747
- [27] Regulation (EU) 2017/745 of the European Parliament and of the Council of 5 April 2017 on medical devices, amending Directive 2001/83/EC, Regulation (EC) No 178/2002 and Regulation (EC) No 1223/2009 and repealing Council Directives 90/385/EEC and 93/42/EEC. Available from: https://eur-lex.europa.eu/legal-content/EN/TXT/PDF/?uri=CELEX:32017R0745
- [28] Autodesk Meshmixer. Available from: https://www.meshmixer.com/
- [29] R.B. Kristiawan, F. Imaduddin, D. Ariawan, Ubaidillah, Z. Arifin, A review on the fused deposition modeling (FDM) 3D printing: Filament processing, materials, and printing parameters, Open Engineering 11/1 (2021) 639-649. DOI: https://doi.org/10.1515/eng-2021-0063
- [30] S. Wickramasinghe, T. Do, P. Tran, FDM-Based 3D Printing of Polymer and Associated Composite: A Review on Mechanical Properties, Defects and Treatments, Polymers 12/7 (2020) 1529. DOI: https://doi.org/10.3390/polym12071529
- [31] C. Wang, S. Li, D. Zeng, X. Zhu, Quantification and compensation of thermal distortion in additive manufacturing: A computational statistics approach, Computer Methods in Applied Mechanics and Engineering 375 (2021) 113611. DOI: https://doi.org/10.1016/j.cma.2020.113611
- [32] D. Corapi, G. Morettini, G. Pascoletti, C. Zitelli, Characterisation of a Polylactic acid (PLA) produced by Fused Deposition Modeling (FDM) technology, Procedia Structural Integrity 24 (2019) 289-295. DOI: https://doi.org/10.1016/j.prostr.2020.02.026
- [33] T. Pereira, J.V. Kennedy, J. Potgieter, A comparison of traditional manufacturing vs additive manufacturing, the best method for the job, Procedia Manufacturing 30 (2019) 11-18. DOI: https://doi.org/10.1016/j.promfg.2019.02.003
- [34] M. Attaran, The rise of 3-D printing: The advantages of additive manufacturing over traditional manufacturing, Business Horizons 60/5 (2017) 677-688. DOI: https://doi.org/10.1016/j.bushor.2017.05.011
- [35] D.B. Perez, E. Celik, R.L. Karkkainen, Investigation of Interlayer Interface Strength and Print Morphology Effects in Fused Deposition Modeling 3D-Printed PLA, 3D Printing and Additive Manufacturing 8/1 (2021) 23-32. DOI: https://doi.org/10.1089/3dp.2020.0109
- [36] L.C. Hieu, E. Bohez, J.V. Sloten, L.T. Hung, L. Khanh, N. Zlatov, P.D. Trung, Integrated Approaches for Personalised Cranio-Maxillofacial Implant Design and Manufacturing, in: V. Van Toi, T.Q.D. Khoa (eds), The Third International Conference on the Development of Biomedical Engineering in Vietnam, IFMBE Proceedings, vol 27, Springer, Berlin, Heidelberg, 2010, 119-122. DOI: https://doi.org/10.1007/978-3- 642-12020-6_29
- [37] J. Wilke, F. Krause, D. Niederer, T. Engeroff, F. Nürnberger, L. Vogt, W. Banzer, Appraising the methodological quality of cadaveric studies: validation of the QUACS scale, Journal of Anatomy 226/5 (2015) 440-446. DOI: https://doi.org/10.1111/joa.12292
- [38] F. Maschio, M. Pandya, R. Olszewski, Experimental Validation of Plastic Mandible Models Produced by a 'Low-Cost' 3-Dimensional Fused Deposition Modeling Printer, Medical Science Monitor 22 (2016) 943-957. DOI: https://doi.org/10.12659/MSM.895656
- [39] K.M. Ogden, C. Aslan, N. Ordway, D. Diallo, G. Tillapaugh-Fay, P. Soman, Factors Affecting Dimensional Accuracy of 3-D Printed Anatomical Structures Derived from CT Data, Journal of Digital Imaging 28/6 (2015) 654-663. DOI: https://doi.org/10.1007/s10278-015-9803-7
- [40] P. Valchanov, S. Pavlov, High Fidelity Anthropomorphic 3D Printed Models - Accuracy, Precision and Quality Control, Proceedings of the IEEE E-Health and Bioengineering Conference “EHB”, Iasi, Romania, 2022, 1-4. DOI: https://doi.org/10.1109/EHB55594.2022.9991424
- [41] M. Salmi, K.S. Paloheimo, J. Tuomi, J. Wolff, A. Mäkitie, Accuracy of medical models made by additive manufacturing (rapid manufacturing), Journal of Cranio-Maxillofacial Surgery 41/7 (2013) 603-609. DOI: https://doi.org/10.1016/j.jcms.2012.11.041
- [42] D.N. Silva, M. Gerhardt de Oliveira, E. Meurer, M.I. Meurer, J.V. Lopes da Silva, A. Santa-Bárbara, Dimensional error in selective laser sintering and 3D-printing of models for craniomaxillary anatomy reconstruction, Journal of Cranio-Maxillofacial Surgery 36/8 (2008) 443-449. DOI: https://doi.org/10.1016/j.jcms.2008.04.003
- [43] R. Olszewski, P. Szymor, M. Kozakiewicz, Accuracy of three-dimensional, paper-based models generated using a low-cost, three-dimensional printer, Journal of Cranio-Maxillofacial Surgery 42/8 (2014) 1847-1852. DOI: https://doi.org/10.1016/j.jcms.2014.07.002
- [44] C. Petropolis, D. Kozan, L. Sigurdson, Accuracy of medical models made by consumer-grade fused deposition modelling printers, Plastic Surgery 23/2 (2015) 91-94. DOI: https://doi.org/10.4172/plastic-surgery.1000912
- [45] A. Nizam, R.N. Gopal, L. Naing, A.B. Hakim, A.R. Samsudin, Dimensional Accuracy of the Skull Models Produced by RapidPrototyping Technology Using Stereolithography Apparatus, Archives of Orofacial Sciences 1 (2006) 60-66.
- [46] J.-Y. Choi, J.-H. Choi, N.-K. Kim, Y. Kim, J.-K. Lee, M.-K. Kim, J.-H. Lee, M.-J. Kim, Analysis of errors in medical rapid prototyping models, International Journal of Oral and Maxillofacial Surgery 31/1 (2002) 23-32. DOI: https://doi.org/10.1054/ijom.2000.0135
- [47] J.Y. Abdullah, M. Omar, H.M.H. Pritam, A. Husein, Z.A. Rajion, Comparison of 3D reconstruction of mandible for pre-operative planning using commercial and open-source software, AIP Conference Proceedings 1791 (2016) 020001. DOI: https://doi.org/10.1063/1.4968856
- [48] L. Cutler, D.A. Boot, Complex fractures, do we operate on enough to gain and maintain experience?, Injury 34/12 (2003) 888-891. DOI: https://doi.org/10.1016/S0020-1383(02)00420-5
- [49] F.D. Burke, Classification of Fractures of Long Bones by M. E. Muller, S. Nazarian, P. Koch, J. Schatzker. Springer-Verlag. 1990. 45.50, Journal of Hand Surgery 16/2 (1991) 228-229. DOI: https://doi.org/10.1016/0266-7681(91)90191-P
- [50] C.J.A. Mendonça, R.M.D.R. Guimarães, C.E. Pontim, S.C. Gasoto, J.A.P. Setti, J.F. Soni, B. Schneider Jr, An Overview of 3D Anatomical Model Printing in Orthopedic Trauma Surgery, Journal of Multi-disciplinary Healthcare 16 (2023) 875-887. DOI: https://doi.org/10.2147/JMDH.S386406
- [51] A. Fidanza, G. Caggiari, F. Di Petrillo, E. Fiori, A. Momoli, G. Logroscino, Three-dimensional printed models can reduce costs and surgical time for complex proximal humeral fractures: preoperative planning, patient satisfaction, and improved resident skills, Journal of Orthopaedics and Traumatology 25/1 (2024) 11. DOI: https://doi.org/10.1186/s10195-024-00754-6
- [52] F. Auricchio, S. Marconi, 3D printing: clinical applications in orthopaedics and traumatology, EFORT Open Reviews 1/5 (2016) 121-127. DOI: https://doi.org/10.1302/2058-5241.1.000012
- [53] S. Ansari, S. Barik, S.K. Singh, B. Sarkar, T. Goyal, R.B. Kalia, Role of 3D printing in the management of complex acetabular fractures: a comparative study, European Journal of Trauma and Emergency Surgery 47/5 (2021) 1291-1296. DOI: https://doi.org/10.1007/s00068-020-01485-z
- [54] J.S. Daurka, P.S. Pastides, A. Lewis, M. Rickman, M.D. Bircher, Acetabular fractures in patients aged > 55 years: A systematic review of the literature, The Bone and Joint Journal 96-B/2 (2014) 157-163. DOI: https://doi.org/10.1302/0301-620X.96B2.32979
- [55] M. Cimerman, A. Kristan, Preoperative planning in pelvic and acetabular surgery: The value of advanced computerised planning modules, Injury 38/4 (2007) 442-449. DOI: https://doi.org/10.1016/j.injury.2007.01.033
- [56] B. Rudran, C. Little, A. Wiik, K. Logishetty, Tibial plateau fracture: anatomy, diagnosis and management, British Journal of Hospital Medicine 81/10 (2020) 1-9. DOI: https://doi.org/10.12968/hmed.2020.0339
- [57] S.P. Patange Subba Rao, J. Lewis, Z. Haddad, V. Paringe, K. Mohanty, Three-column classification and Schatzker classification: a three- and two-dimensional computed tomography characterisation and analysis of tibial plateau fractures, European Journal of Orthopaedic Surgery and Traumatology 24/7 (2014) 1263-1270. DOI: https://doi.org/10.1007/s00590-013- 1308-9
- [58] M.K. Moussa, E. Vuilletet, A. Alayane, M.O. Boushnak, J. Fleurette, N. Nicolas, M. Thiongo, Z. Missaoui, G. Kassab, Minimally Invasive Osteosynthesis of Intra-articular Calcaneus Fracture Augmented by Femoral Head Allograft: A Retrospective Study, Cureus 14/9 (2022) e28684. DOI: https://doi.org/10.7759/cureus.28684
- [59] V.R. Maryada, P. Mulpur, K.K. Eachempati, A. Annapareddy, V. Badri Narayana Prasad, A.V. Gurava Reddy, Pre-operative planning and templating with 3-D printed models for complex primary and revision total hip arthroplasty, Journal of Orthopaedics 34 (2022) 240-245. DOI: https://doi.org/10.1016/j.jor.2022.09.004
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-879ccb5b-25df-47cf-b0b2-71c6461791b1
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.