PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Numerical Simulation of the Phase Transformations in Steels: A Case Study on Newly-Developed Multi-Phase Steels for Drop Forgings

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
The aim of the work was to determine the diagrams of phase evolution under equilibrium conditions and numerical simulation of austenite phase transformations under non-equilibrium conditions, as well as to determine CCT (Continuous Cooling Transformation) and TTT (Temperature Time Transformation) diagrams with the use of JMatPro software. The subject of the analysis were two newly elaborated multiphase steels assigned for production of forgings: steel A, containing of 0.165% C, 2% Mn, 1.11% Si and steel B, containing 0.175% C, 1,87% Mn, 1% Si, 0.22% Mo and Ti and V microadditions at a concentration of 0.031% and 0.022%, respectively. The performed simulation revealed that the investigated steels have similar critical temperatures under equilibrium conditions: Ac1 ~ 680°C, Ac3 ~ 830°C. The chemical composition of steel B and the interaction of Mo, Ti and V in particular, determine that diffusion transformations, i.e. ferritic and pearlitic, in the elaborated CCT and TTT diagrams are significantly shifted to longer times in relation to the position of these transformations in the diagrams for steel A. A distinct delay also concerns the bainitic transformation. Moreover, it was found that the MS temperature of steel B is slightly lower. The determined CCT and TTT diagrams are essentially helpful in the development of heat and thermo-mechanical treatment conditions for new steel grades.
Twórcy
  • Faculty of Mechanical Engineering, Silesian University of Technology, ul. Konarskiego 18A, 44-100 Gliwice, Poland
autor
  • Faculty of Mechanical Engineering, Silesian University of Technology, ul. Konarskiego 18A, 44-100 Gliwice, Poland
Bibliografia
  • 1. Avrami M. Kinetics of phase change I. General theory. Journal of Chemical Physics 1939; 7: 1103–1112.
  • 2. Badeshia H.K.D.H. Driving force for martensitic transformation in steels. Metal Science 1981; 15: 175–177.
  • 3. Badeshia H.K.D.H. Thermodynamic extrapolation and martensite-start temperature of substitutionally alloyed steels. Metal Science 1981; 15: 178–180.
  • 4. Badeshia H.K.D.H. Thermodynamic analysis of isothermal transformation diagrams. Metal Science 1982; 16: 159–165.
  • 5. Badeshia H.K.D.H., Dimitriu R.C., Forsik S., Pak J.H., Ryu J.H. Performance of neural networks in material science. Materials Science and Technology 2009; 25(4): 504–510.
  • 6. Contreras A., López A., Gutiérrez E.J., Fernández B., Salinas A., Deaquino R., Bedolla A., Saldaña R., Reyes I., Aguilar J., Cruz R. An approach for the design of multiphase advanced high-strength steels based on the behavior of CCT diagrams simulated from the intercritical temperature range. Materials Science and Engineering A 2020; 772: 1–32.
  • 7. De Cooman B.C., Speer J.G. Fundamentals of steel product physical metallurgy. Association for Iron and Steel, Pittsburgh 2011.
  • 8. Diekmann U. Calculation of steel data using JMatPro. International Conference on Recent Trends in Structural Materials, Plzeň, Czech Republic 2012: 1–6.
  • 9. Grajcar A. Stucture of the C-Mn-Si-Al steel formed with strain-induced martensitic transformation. The Silesian University of Technology Publishers, Gliwice 2009, (in Polish).
  • 10. Grajcar A. High strength multiphase steels engineering. The Silesian University of Technology Publishers, Gliwice 2019, (in Polish).
  • 11. Grajcar A., Morawiec M., Zalecki W. Austenite Decomposition and Precipitation Behavior of Plastically Deformed Low-Si Microalloyed Steel. Metals 2018; 8(1028): 1–12.
  • 12. Grajcar A., Woźniak D., Kozłowska A. Non-metallic inclusions and hot-working behavior of advanced high-strengthg medium-Mn steels. Archives of Metallurgy and Materials 2016; 61(2): 811–820.
  • 13. Gramlich A., Emmrich R., Bleck W. Austenite reversion tempering-annealing of 4 wt.% manganese steels for automotive forging application. Metals 2019; 9(575): 1–10.
  • 14. Guo Z., Saunders N., Miodownik A.P., Schille J.P. Modelling phase transformations and material properties critical to the prediction of distortion during the heat treatment of steels. International Journal of Microstructure and Materials Properties 2009; 4(2): 187–195.
  • 15. Hillert M. The role of interfacial energy during solid-state phase transformations. Jernkontorets Annaler 1957; 141: 757–789.
  • 16. Isati N., Garcia-Riesco P.M., Jorge-Badiola D., Taheri M., Lopez B., Uranga P. Modelling of CCT diagrams and ferrite grain size prediction in low carbon Nb-Mo microalloyed steels. ISIJ International 2015; 55: 1963–1972.
  • 17. Johnson J., Mehl R. Reaction kinetics in processes of nucleation and growth. Transactions of the AIME 1939; 135: 416–458.
  • 18. Keul C., Wirths V., Bleck W. New bainitic steel for forgings. Archives of Civil and Mechanical Engineering 2012; 12: 119–125.
  • 19. Kirkaldy J.S. Diffusion controlled phase transformation in steel. Scandinavian of Metallurgy 1991; 20: 50–61.
  • 20. Kirkaldy J.S., Sharma R.C. A new phenomenology for steel it and CCT curves. Scripta Metallurgica 1982; 6(10): 1193–1198.
  • 21. Kirkaldy J.S., Thomson B.A., Baganis E.A. Prediction of multicomponent equilibrium and transformation diagrams for low alloy steels [in:] Doane D.V., Kirkaldy J.S. (Eds.). Hardenability concepts with applications to steel. The Metallurgical Society of AIME, New York 1978, 82–119.
  • 22. Kirkaldy J.S., Venugopolan D. Prediction of microstructure and hardenability in low alloy steels, [In:] Marder A.R. and Goldstein J.I. (eds.). Phase transformations in ferrous alloys. The Metallurgical Society of AIME, Philadelphia 1984, 125–148.
  • 23. Koinstinen D.P., Marburger R.E. A general equation prescribing extent of austenite-martensite transformation in pure Fe-C alloys and plain carbon steels. Acta Metallurgica 1959; 7: 59–60.
  • 24. Lee J-L., Badeshia H.K.D.H. A methodology for the prediction of time-temperature-transformation diagrams. Materials Science and Engineering A 1993; 171(1–2): 223–230.
  • 25. Li D., Yan Z., Wang R., Kang Y., Shen L. Effect of HotDeformation Processes on Phase Transformation of LowAlloyed, Multiphase, HighStrength Steel. Steel Research International 2020; 91(11): 1–12.
  • 26. Morawiec M., Grajcar A., Zalecki W., Garcia-Mateo C., Opiela M. Dilatometric study of phase transformation in 5 Mn steel subjected to different heat treatments, Materials 2020; 13(958) 1–15.
  • 27. Navarro-Lopez A., Sietsma J., Santofimia M.J. Effect of prior a thermal martensite on the isothermal
  • 28. transformation kinetic below Ms in a low-C high-Si steel. Metallurgical and Materials Transactions A 2016; 47(3): 1028–1039.
  • 29. Opiela M. Thermomechanical treatment of Ti-Nb-V-B microalloyed steel forgings. Materiali in Tehnologije 2014; 48(4): 587–591.
  • 30. Pernach M., Pietrzyk M. Numerical solution of the diffusion equation with moving boundary applied to modelling of the austenite-ferrite phase transformation. Computational Materials Science 2008; 44: 783–791.
  • 31. Saunders N., Guo Z., Li X., Miodownik A.P., Schillé J.P. Using JMatPro to model materials properties and behavior. The Journal of The Minerals, Metals & Materials Society 2003; 55: 60–65.
  • 32. http://www.sentesoftware.co.uk/biblio.html
  • 33. Sugimoto K., Hojo T., Kobayashi J. Critical assessment of TRIP-aided bainitic ferrite steels. Materials Science and Technology 2017; 33(17): 2005–2009.
  • 34. Sugimoto K., Hojo T., Mizuno Y. Torsional fatigue strength of newly developed case hardening TRIP-aided steel. Metals 2017; 7(375): 1–13.
  • 35. Sugimoto K., Hojo T., Srivastava A.K. An Overview of fatigue strength of case-hardening TRIP-aided martensitic steels. Metals 2018; 8(355): 1–19.
  • 36. Sugimoto K., Hojo T., Srivastava A.K. Low and medium carbon advanced high-strength forging steels for automotive applications. Metals 2019; 9(1263): 1–14.
  • 37. Timokhina I.B., Hodghson P.D., Pereloma E.V. Effect of alloying elements on the microstructure-property relationship in thermomechanically processed C-Mn-Si TRIP steels. Steel Research 2002; 73: 274–279.
  • 38. Traint S., Pichler A., Sierlinger R., Pauli H., Werner E.A. Low-alloyed TRIP-steels with optimized strength, forming and welding properties. Steel Research 2006; 77: 641–649.
  • 39. Trzaska J. Empirical formulae for the calculation of austenite supercooled transformation temperatures. Archives of Metallurgy and Materials 2015; 60(1): 181–185.
  • 40. Trzaska J., Dobrzański L.A. Modelling of CCT diagrams for engineering and constructional steels. Journal of Materials Processing Technology 2007; 192–193: 504–510.
  • 41. Wang C., Ding H., Cai M., Rolfe B. Multi-phase microstructure design of a novel high strength TRIP steel through experimental methodology. Materials Science and Engineering A 2014; 610: 436–444.
  • 42. Zener C. Kinetics of the decomposition of austenite. Transaction of the Metallurgical Society of AIME 1946; 167: 550–559.
  • 43. Zhang J.C., Mo C., Li D., Li Y. Modeling of phase transformation of plain carbon steels during continuous cooling. Journal of Materials Science and Technology 2003; 19(3): 262–264.
Uwagi
Opracowanie rekordu ze środków MNiSW, umowa Nr 461252 w ramach programu "Społeczna odpowiedzialność nauki" - moduł: Popularyzacja nauki i promocja sportu (2021).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-870afcf0-3794-4252-847b-97b709bb9962
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.