PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Conceptual adsorption system of cooling and heating supplied by solar energy

Autorzy
Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
This paper presents the possibility of reducing the demand for nonrenewable primary energy for buildings using a new conceptual adsorption system of cooling and heating supplied by solar energy. Moreover, the aim of this study is to shorten the payback time of investment in the standard adsorption cooling system through its integration with the heating system. Research has been carried out for an energy-efficient medium-sized single-family building with a floor area of 140 m 2 and a heat load of 4.2 kW and cold load of 4.41 kW. It has been shown that the use of an adsorption system of cooling and heating supplied by solar energy decreased the demand for nonrenewable primary energy by about 66% compared to the standard building that meets the current requirements.
Rocznik
Strony
293--304
Opis fizyczny
Bibliogr. 37 poz., tab., rys.
Twórcy
autor
  • Czestochowa University of Technology , Faculty of Infrastructure and Environment, 60A Brzeznicka St., 42-200 Czestochowa, Poland
Bibliografia
  • 1. Abreu-Harbich L., Labaki L., Matzarakis A., 2014. Thermal bioclimate as a factor in urban and architectural planning in tropical climates - The case of Campinas, Brazil. Urban Ecosyst., 17, 489-500. DOI: 10.1007/s11252-013-0339-7.
  • 2. Aristov Y., Glaznev I., Girnik I., 2012a. Optimization of adsorption dynamics in adsorptive chillers: Loose grains configuration. Energy, 46, 484-492. DOI: 10.1016/j.energy.2012.08.001.
  • 3. Aristov Y., Sapienz A., Ovoshchnikov D., Freni A., Restuccia G., 2012b. Reallocation of adsorption and desorption times for optimisation of cooling cycles. Int. J. Refrig., 35, 525-531. DOI: 10.1016/j.ijrefrig.2010.07.019.
  • 4. Askalany A., Salem M., Ismael I., Ali A., Morsy M., Saha B., 2013. An overview on adsorption pairs for cooling. Renew. Sustain. Energy Rev., 19, 565-572. DOI: 10.1016/j.rser.2012.11.037.
  • 5. Carutasiu M., Ionescu C., Necula H., 2016. The influence of genetic algorithm parameters over the efficiency of the energy consumption estimation in a low-energy building. Energy Procedia, 85, 99-108. DOI: 10.1016/j.egypro.2015.12.279.
  • 6. Cholewa T., Rosiński M., Spik Z., Dudzińska M., Siuta-Olcha A., 2013. On the heat transfer coefficients between heated/cooled radiant floor and room. Energy Build., 66, 599-606. DOI: 10.1016/j.enbuild.2013.07.065.
  • 7. Cholewa T., Siuta-Olcha A., Skwarczyński M., 2011. Experimental evaluation of three heating systems commonly used in the residential sector. Energy Build., 43, 2140-2144. DOI: 10.1016/j.enbuild.2011.04.026.
  • 8. Chou D., Chang C., Chang J., 2016. Energy conservation using solar collectors integrated with building louver shading devices. App. Therm. Eng., 93, 1282-1294. DOI: 10.1016/j.applthermaleng.2015.09.014.
  • 9. Eshraghi J., Narjabadifam N., Mirkhani N., Sadoughi Khosroshahi S., Ashjaee M., 2014. A comprehensive feasibility study of applying solar energy to design a zero energy building for a typical home in Tehran. Energy Build., 72, 329-339. DOI: 10.1016/j.enbuild.2014.01.001.
  • 10. Facao J., Lobato A., Baldo C., 2014. The coolsun triple-technology approach to reach high solar fractions for space heating, space cooling and domestic hot water. Energy Procedia, 48, 554-560. DOI: 10.1016/j.egypro.2014.02.065.
  • 11. Freni A., Sapienza A., Glaznev I., Aristov Y., Restuccia G., 2012. Experimental testing of a lab-scale adsorption chiller using a novel selective water sorbent “silica modified by calcium nitrate”. Int. J. Refrig., 35, 518-524. DOI: 10.1016/j.ijrefrig.2010.05.015.
  • 12. Gargari C., Bibbiani C., Fantozzi F., Campiotti C., 2016. Simulation of the thermal behavior of a building retroffited with a green roof: optimization of energy efficiency with reference to Italian climatic zones. Agric. Agric. Sci. Procedia, 8, 628-636. DOI: 10.1016/j.aaspro.2016.02.085.
  • 13. Hassan H., Mohamad A., 2012. A review on solar-powered closed physisorption cooling systems. Renew. Sustain. Energy Rev., 16, 2516-2538. DOI: 10.1016/j.rser.2012.02.068.
  • 14. Hassan H., Mohamad A., Al-Ansary A., 2012. Development of a continuously operating solar-driven adsorption cooling system: Thermodynamic analysis and parametric study. Appl. Therm. Eng., 48, 332-341. DOI: 10.1016/j.applthermaleng.2012.04.040.
  • 15. Jazizadeh F., Ghahramani A., Becerik-Gerber B., Kichkaylo T., Orosz M., 2014. Human-building interaction framework for personalized thermal comfort-driven systems in office buildings. J. Comput. Civil Eng., 28, 2-16. DOI: 10.1061/(asce)cp.1943-5487.0000300.
  • 16. Jribi S., Saha B., Koyama S., Chakraborty A., Choon Ng K., 2013. Study on activated carbon/HFO-1234ze(E) based adsorption cooling cycle. Appl. Therm. Eng., 50, 1570-1575. DOI: 10.1016/j.applthermaleng.2011.11.066.
  • 17. La D., Dai Y., Li H., Li Y., Kiplagat J, Wang R., 2011. Experimental investigation and theoretical analysis of solar heating and humidification system with desiccant rotor. Energy Build., 43, 1113-1122. DOI: 10.1016/j.enbuild.2010.08.006.
  • 18. Li H., Dai Y., Köhler M., Wang R., 2013. Simulation and parameter analysis of a two-stage desiccant cooing/heating system driven by solar air collectors. Energy Convers. Manage., 67, 309-317. DOI: 10.1016/j.enconman.2012.11.005.
  • 19. Lu Z., Wang R., Xia Z., Lu X., Yang C., Mac Y., Ma G., 2013a. Study of a novel solar adsorption cooling system and a solar absorption cooling system with new CPC collectors. Renew. Energy, 50, 299-306. DOI: 10.1016/j.renene.2012.07.001.
  • 20. Lu Z., Wang R., Xia Z., 2013b. Experimental analysis of an adsorption air conditioning with micro-porous silica gel-water. Appl. Therm. Eng., 50, 1015-1020. DOI: 10.1016/j.applthermaleng.2012.07.041.
  • 21. Myat A., Choon N., Thu K., Kim Y., 2013. Experimental investigation on the optimal performance of Zeolite–water adsorption chiller. Appl. Energy, 102, 582-590. DOI: 10.1016/j.apenergy.2012.08.005.
  • 22. Palm J., Reindl K, 2016. Understanding energy efficiency in Swedish residential building renovation: A practice theory approach. Energy Res. Social Sci., 11, 247-255. DOI: 10.1016/j.erss.2015.11.006.
  • 23. Rezk A., Al-Dadah R., 2012. Physical and operating conditions effects on silicagel/water adsorption chiller performance. Appl. Energy, 89, 142-149. DOI: 10.1016/j.apenergy.2010.11.021.
  • 24. Sapienza A., Glaznev I., Santamaria S., Freni A., Aristov Y., 2012. Adsorption chilling driven by low temperature heat: New adsorbent and cycle optimization. Appl. Therm. Eng., 32, 141-146. DOI: 10.1016/j.applthermaleng.2011.09.01
  • 25. Sarbu I., Sebarchievici C., 2013. Review of solar refrigeration and cooling systems. Energy Build., 67, 286-297. DOI: 10.1016/j.enbuild.2013.08.022.
  • 26. Schicktanz M., Hu P., Henninger S., 2012. Evaluation of methanol/activated carbons for thermally driven chillers, part II: The energy balance model. Int. J. Refrig., 35, 554-561. DOI: 10.1016/j.ijrefrig.2011.03.014.
  • 27. Sekret R., Turski M., 2012. Research on an adsorption cooling system supplied by solar energy. Energy Build., 51, 15-20. DOI: 10.1016/j.enbuild.2012.04.008. shop.powerauditing.com/c25,cooling-systems. Gabriel Miczka Przedsiębiorstwo. Retrived April 7, 2015.
  • 28. Solmus I, Kaftanoglu B, Yamal C, Baker D., 2011. Experimental investigation of a natural zeolite-water adsorption cooling unit. Appl. Energy, 88, 4206-4213. DOI: 10.1016/j.apenergy.2011.04.057.
  • 29. SorTechAG. Retrived April 7, 2015 from www.sortech.de.
  • 30. Szargut J., 2010. Energy of exergy. Rynek Energii, 5, 3-5.
  • 31. Szargut J., Stanek W., 2010. Thermo-climatic cost of the domestic consumption products. Energy, 35, 1196-1199. DOI: 10.1016/j.energy.2009.04.025.
  • 32. Szyc M., Nowak W., 2014. Operation of an adsorption chiller in different cycle time conditions. Chem. Process Eng., 35, 109-119. DOI: 10.2478/cpe-2014-0008.
  • 33. Tso C., Chao C., Fu S., 2012. Performance analysis of a waste heat driven activated carbon based composite adsorbent – Water adsorption chiller using simulation model. Int. J. Heat Mass Transf., 55, 7596-7610. DOI: 10.1016/j.ijheatmasstransfer.2012.07.064.
  • 34. Vasta S., Freni A., Sapienza A., Costa F., Restuccia G., 2012. Development and lab-test of a mobile adsorption air-conditioner. Int. J. Refrig., 35, 701-708. DOI: 10.1016/j.ijrefrig.2011.03.013.
  • 35. Wawrzyńczak D., Nowak W., 2009. Application of low parameter PSA process for capture of CO2 from flue gases emitted during oxygen-enriched combustion. Chem. Process Eng., 30, 589-602.
  • 36. Wojdyga K., An investigation into the heat consumption in a low-energy building. Renew. Energy, 34, 2935-2939. DOI: 10.1016/j.renene.2009.04.001.
  • 37. Zhang X., Song B., Bai Q., Yang C., 2013. Performance analysis on a new type of solar air conditioning system. Energy Build., 60, 280-285. DOI: 10.1016/j.enbuild.2013.01.018.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-84dfed4c-90f5-47b1-b277-004156c39227
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.