PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Comparative investigation of working fluids for an organic Rankine cycle with geothermal water

Autorzy
Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
In this paper, the thermodynamic investigation on the use of geothermal water (130°C as maximum) for power generation through a basic Rankine has been presented together with obtained main results. Six typical organic working fluids (i.e., R245fa, R141b, R290, R600, R152a, and 134a) were studied with modifying the input pressure and temperature to the turbine. The results show that there are no significant changes taking place in the efficiency for these working fluids with overheating the inlet fluid to the turbine, i.e., efficiency is a weak function of temperature. However, with the increasing of pressure ratio in the turbine, the efficiency rises more sharply. The technical viability is shown of implementing this type of process for recovering low temperature heat resource.
Rocznik
Strony
75--84
Opis fizyczny
Bibliogr. 31 poz., rys., tab,
Twórcy
autor
  • Faculty of Chemical Engineering, Kunming University of Science and Technology, Kunming, 650500, China
autor
  • Faculty of Metallurgical and Energy Engineering, Kunming University of Science and Technology, Kunming, 650093, China
Bibliografia
  • [1] YAMAMOTO T, FURUHATA T, ARAI N.: Design and testing of the Organic Rankine Cycle. Energy 26(2001), 3, 239–51
  • [2] HETTIARACHCHI H.D.M., GOLUBOVIC M., WOREK W.M., IKEGAMI Y.: Optimum design criteria for an organic Rankine cycle using low-temperature geothermal heat sources. Energy 3(2007), 9, 1698–1706.
  • [3] BARBIER E.: Nature and technology of geothermal energy: a review. Renew Sust. Energ. Rev. 1(1997), (1–2), 1–69.
  • [4] BARBIER E.: Geothermal energy technology and current status: an overview. Renew. Sust. Energ. Rev. 6(2002), 1–2, 3–65.
  • [5] OZGENER L., HEPBASLI A., DINCER I.: Performance investigation of two geothermal district heating systems for building applications: energy analysis. Energ. Build. 38(2006), 286–92.
  • [6] OZGENER O., HEPBASLI A., OZGENER L.: A parametric study on the exergoeconomic assessment of a vertical ground coupled (geothermal) heat pump system. Build. Environ. 42(2007), 1503–1509.
  • [7] OZGENER L., OZGENER O.: Monitoring of energetic and exergetic performance analysis of Salihli Geothermal District Heating System. J. Energy Resour. Technol. ASME 130(2008), 022302.
  • [8] OZGENER L., OZGENER O.: Monitoring of energy exergy efficiencies and exergoeconomic parameters of Geothermal District Heating Systems (GDHSs). Appl. Energ. 86(2009), 1704–1711.
  • [9] OZGENER O., OZGENER L.: Exergoeconomic analysis of an underground air tunnel system for greenhouse cooling system. Int. J. Refrig. 33(2010), 995–1005.
  • [10] OZGENER O., OZGENER L., GOSWAMI D.Y.: Experimental prediction of total thermal resistance of a closed loop EAHE for greenhouse cooling system. Int. Commun. Heat Mass 38(2011), 711–716.
  • [11] KANOGLU M.: Exergy analysis of a dual-level binary geothermal plant. Geothermics 31(2002),709–724.
  • [12] WALRAVEN D., LAENEN B., D’HAESELEER W.: Comparison of thermodynamic cycles for power production from low-temperature geothermal heat sources. Energ. Convers. Manage. 66(2013), 220–233.
  • [13] TESTER J., ANDERSON B., BATCHELOR A., BLACKWELL D., DIPIPPO R., DRAKE E. et al.: The future of geothermal energy: impact of enhanced geothermal systems (EGSs) on the United States in the 21st century. Science 2006.
  • [14] PASCHEN H., OERTEL D., GRÜNWALD R.: Möglichkeiten geothermischer Stromerzeugung in Deutschland. TAB Arbeitsbericht 84.
  • [15] YARI M.: Exergetic analysis of various types of geothermal power plants. Renew. Energ. 35(2010), 112–121.
  • [16] GU Z., SATO S.: Performance of supercritical cycles for geothermal binary design. Energ. Convers. Manage. 43(2002), 961–971.
  • [17] GUO T., WANG H.X., ZHANG S.J.: Selection of working fluids for a novel low temperature geothermally-powered ORC based cogeneration system. Energ. Convers. Manage. 52(2011), 2384–2391.
  • [18] ANDERSEN W.C., BRUNO T.J.: Rapid screening of fluids for chemical stability in organic Rankine cycle applications. Ind. Eng. Chem. 44(2005), 5560–5566.
  • [19] MAIZZA V., MAIZZA A.: Unconventional working fluids in organic Rankine-cycles for waste energy recovery systems. Appl. Thermal. Eng. 21(2001), 381–390.
  • [20] XIAO S., WU S., ZHENG D.: Slagwashing water of blast furnace power station with supercritical organic Rankine cycle. J. Cent. Univ. 20(2013), 737–741.
  • [21] TCHANCHE B.F., PAPADAKIS G., LAMBRINOS G., FRANGOUDAKIS A.: Fluid selection for a low-temperature solar organic Rankine cycle. Appl. Therm. Eng. 29(2009), 2468–2476.
  • [22] LEMORT V., QUOILIN S. CUEVAS, C., LEBRUN J.: Testing and modeling a scroll expander integrated into an organic Rankine cycle. Appl. Therm. Eng. 29(2009), 3094–3102.
  • [23] CHEN H., GOSWAMI D.Y., STEFANAKOS E.K.: A review of thermodynamic cycles and working fluids for the conversion of low-grade heat. Renew. Sust. Energ. Rev. 14(2010), 3059–3067.
  • [24] BIANCHI M., DE PASCALE A.: Bottoming cycles for electric energy generation: parametric investigation of available and innovative solutions for the exploitation of low and medium temperature heat sources. Appl. Energ. 88(2011), 1500–1509.
  • [25] CHACARTEGUI R., SÁNCHEZ D., MUŃOZ J.M., SÁNCHEZ T.: Alternative ORC bottoming cycles for combined cycle power plants. Appl. Energ. 86(2009), 2162– 2170.
  • [26] LAI N.A., WENDLAND M., FISCHER J.: Working fluids for high-temperature organic Rankine cycles. Energy 36(2011), 199–211.
  • [27] ROY J.P., MISHRA M.K., MISRA A.: Performance analysis of an organic Rankine cycle with superheating under different heat source temperature conditions. Appl. Energ. 88(2011), 2995–3004.
  • [28] WANG E.H., ZHANG H.G., FAN B.Y., OUYANG M.G., ZHAO Y., MU Q.H.: Study of working fluid selection of organic Rankine cycle (ORC) for engine waste heat recovery. Energy 36(2011), 3406–3418.
  • [29] YARI M.: Exergetic analysis of various types of geothermal power plants. Renew. Energ. 35(2010), 112–121.
  • [30] ZIÓŁKOWSKI P., MIKIELEWICZ D., MIKIELEWICZ J.: Increase of power and efficiency of the 900 MW supercritical power plant through incorporation of the ORC. Arch. Thermodyn. 34(2013), 4, 51–71.
  • [31] http://www.fchart.com/ees
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-84a8fb11-eeaf-44e4-9781-1415cb4f37f2
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.