PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Optimum location of last-mined stope with the influence of backfilling

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
Many mines in Canada have adopted sublevel stoping method or one of its variations, such as blasthole stoping (BHS) and sublevel longhole retreat (SLR), for the extraction of steeply dipping orebodies. Stope, as the basic excavated element, plays a significant role in the whole process of mining activity. In the mining method of BHS, crossing cuts are excavated at tops and bottoms in each stope for drilling blast holes and transportation of mined out orebodies. Crossing cuts failure may result in prolonged production interruption, fatality, and equipment loss. After the completion of orebodies excavation from the sublevel open stope, the void stopes will be backfilled with cemented rockfill (CRF) for secondary stopes. The strength of the CRF affects the stability of the adjacent crossing cuts for the next excavation scheme. Rational location of the last mined stope can effectively eliminate the instability of crossing cuts. By using the Finite Element Method (FEM) such as Abaqus codes in this study, this paper presents the comparison of floor heaves, roof displacements, and sidewall swellings of the crossing cuts in each stopes of different location scenarios. The numerical simulation shows that the central stope location of the level is the optimum one for the last mined stope.
Rocznik
Strony
212--220
Opis fizyczny
Bibliogr. 24 poz.
Twórcy
autor
  • Department of Civil and Environmental Engineering, University of Alberta, Edmonton, Alberta, Canada
  • Department of Civil and Environmental Engineering, University of Alberta, Edmonton, Alberta, Canada
Bibliografia
  • [1] Mathews KE, Hoek E, Wyllie DC, Stewart S. Prediction of stable excavation spans for mining at depths below 1000 m in hard rock. Ottawa: CANMET DSS; 1981.
  • [2] Chen DW, Chen JY, Zavodni ZM. Stability analysis of sublevel open stopes at great depth. In: Proc 24th US Symp. Rock Mech., no. June; 1983. p. 587-97. https://doi.org/10.1016/0148-9062(84)91359-7.
  • [3] Bai X, Marcotte D, Simon R. Computers & Geosciences Underground stope optimization with network flow method. Comput. Geosci. 2013;52:361-71. https://doi.org/10.1016/j.cageo.2012.10.019.
  • [4] Cai M, Kaiser PK, Martin CD. “A Tensile Model for the Interpretation of Microseismic Events near Underground Openings,” in Seismicity Caused by Mines. Fluid Injections, Reservoirs, and Oil Extraction 1998;153:67-92.
  • [5] Diederichs MS, Kaiser PK. Tensile strength and abutment relaxation as failure control mechanisms in underground excavations. Int. J. Rock Mech. Min. Sci. 1999;36:69-96.
  • [6] Martin CD, Kaiser PK, Christiansson R. Stress , instability and design of underground excavationsvol. 40; 2003. p. 1027-47. https://doi.org/10.1016/S1365-1609(03)00110-2.
  • [7] Zhang Y, Mitri HS. Stability assessment of non-entry stopes using nonlinear finite element analysis [Online]. Available:. 2007. https://www.onepetro.org/conference-paper/ARMA-07-165.
  • [8] Cepuritis PM, Villaescusa E, Beck DA, Varden R. Back analysis of Over-break in a Longhole Open Stope Operation using Non-linear Elasto-Plastic Numerical Modelling. 2010.
  • [9] Idris MA, Saiang D, Nordlund E. Consideration of the rock mass property variability in numerical modelling of open. In: in Bergmekanikdag; 2012. p. 111-23.
  • [10] Idris MA, Saiang D, Nordlund E. Numerical Analyses of the Effects of Rock Mass Property Variability on Open Stope Stability. 2011.
  • [11] Idris MA, Saiang D, Nordlund E. Probabilistic analysis of open stope stability using numerical modelling. Int. J. Min. Miner. Eng. 2011;3(3):194-219. https://doi.org/10.1504/ijmme.2011.043849.
  • [12] Cai M. Rock Mass Characterization and Rock Property Variability Considerations for Tunnel and Cavern Design. Rock Mech. Rock Eng. 2011:379-99. https://doi.org/10.1007/s00603-011-0138-5.
  • [13] V Kurlenya M, Baryshnikov VD, Gakhova LN. Experimental and Analytical Method for Assessing Stability of Stopes. J. Min. Sci. 2012;48(4):609-15. https://doi.org/10.1134/s1062739148040028.
  • [14] Urli V, Esmaieli K. International Journal of Rock Mechanics & Mining Sciences A stability-economic model for an open stope to prevent dilution using the ore-skin design. Int. J. Rock Mech. Min. Sci. 2016;82:71-82. https://doi.org/10.1016/j.ijrmms.2015.12.001.
  • [15] Heidarzadeh S, Saeidi A, Rouleau A. Assessing the effect of open stope geometry on rock mass brittle damage using a response surface methodology. Int. J. Rock Mech. Min. Sci. 2018;106:60-73. https://doi.org/10.1016/j.ijrmms.2018.03.015. March.
  • [16] Hustrulid WA, Hustrulid WA, Bullock RL, Bullock RC. Underground mining methods: Engineering fundamentals and international case studies. SME; 2001.
  • [17] Jing L, Hudson JA. Numerical methods in rock mechanics. Int. J. Rock Mech. Min. Sci. 2002;39(4):409-27. https://doi.org/10.1016/S1365-1609(02)00065-5.
  • [18] Jing L. A review of techniques, advances and outstanding issues in numerical modelling for rock mechanics and rock engineering. Int. J. Rock Mech. Min. Sci. 2003;40(3):283-353. https://doi.org/10.1016/S1365-1609(03)00013-3.
  • [19] Hart R. Enhancing rock stress understanding through numerical analysis. Int. J. Rock Mech. Min. Sci. 2003;40(7e8): 1089-97. https://doi.org/10.1016/S1365-1609(03)00116-3.
  • [20] Wiles TD. Reliability of numerical modelling predictions. Int. J. Rock Mech. Min. Sci. 2006;43(3):454-72. https://doi.org/10.1016/j.ijrmms.2005.08.001.
  • [21] Cai M. Influence of stress path on tunnel excavation response - Numerical tool selection and modeling strategy. Tunn. Undergr. Sp. Technol. 2008;23(6):618-28. https://doi.org/10.1016/j.tust.2007.11.005.
  • [22] Sun Y, Chen Y, Wang Z. Numerical simulation of inner support for excavation based on FEM software ABAQUS. Appl. Mech. Mater. 2012;236e237:632-5. https://doi.org/10.4028/www.scientific.net/AMM.236-237.632.
  • [23] Dassault Systémes Simulia Corp. “Analysis User's Manual Volume 1: Introduction, Spatial modeling, execution and output. 6 Abaqus 2012;I:12.
  • [24] Sepehri M, Apel DB, Adeeb S, Leveille P, Hall RA. Evaluation of mining-induced energy and rockburst prediction at a diamond mine in Canada using a full 3D elastoplastic finite element model. Eng. Geol. February 2019;266:2020. https://doi.org/10.1016/j.enggeo.2019.105457.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-83dc1ec7-4263-4141-aa2e-03067a78c709
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.