PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Integrating ceramic wastes into concrete: Sustainable disposal and resource optimization strategies

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
The incorporation of ceramic solid waste into concrete has been studied as a sustainable strategy for waste reduction and resource efficiency. With ceramic waste contributing significantly to global landfill volumes, our study aims to evaluate its potential as a partial replacement for fine aggregate in concrete mixtures. The study demonstrates that incorporating up to 20% ceramic waste leads to a 14% reduction in workability but notably enhances compressive strength by 17% and improves durability by 11%. These results highlight a promising approach for reducing the environmental impact of ceramic waste, addressing a critical issue in solid waste management. By diverting ceramic waste from landfills, this method not only alleviates disposal challenges but also contributes to resource conservation. The findings underscore the dual benefits of this technique: optimizing the use of available resources and reducing landfill waste. This research presents a viable solution for leveraging ceramic waste in concrete production, thereby promoting both environmental sustainability and improved material performance.
Rocznik
Strony
53--72
Opis fizyczny
Bibliogr. 30 poz., rys., tab.
Twórcy
  • Department of Civil Engineering, Rajalakshmi Engineering College, Chennai Tamilnadu, India
  • Department of Civil Engineering, Easwari Engineering College, Chennai, Tamilnadu, India
  • Department of Civil Engineering, Nandha Engineering College, Erode, Tamilnadu, India.
  • Department of Civil Engineering, Kongunadu College of Engineering and Technology, Trichy, Tamilnadu, India.
Bibliografia
  • [1] SAMADI M., HUSEIEN G.F., MOHAMMADHOSSEINI H., LEE H.S., LIM N.H., TAHIR M.M., ALYOUSEF R., Waste ceramic as low cost and eco-friendly materials in the production of sustainable mortars, J. Clean. Prod., 2020, 266, 121825. DOI: 10.1016/j.jclepro.2020.121825.
  • [2] MOHAMMADHOSSEINI H., LIM N.H.A.S., MD TAHIR M., ALYOUSEF R., ALABDULJABBAR H., SAMADI M., Enhanced performance of green mortar comprising high volume of ceramic waste in aggressive environments, Constr. Build. Mater., 2019, 212, 607–617. DOI: 10.1016/j.conbuildmat.2019.04.024 (article retracted).
  • [3] PACHECO-TORGAL F., SAID J., Reusing ceramic wastes in concrete, Constr. Build. Mater., 2010, 24 (5), 832–838. DOI: 10.1016/J.CONBUILDMAT.2009.10.023.
  • [4] ROBAYO-SALAZAR R.A., MEJÍA-ARCILA J.M., MEJÍA DE GUTIÉRREZ R., Eco-efficient alkali-activated cement based on red clay brick wastes suitable for the manufacturing of building materials, J. Clean. Prod., 2017, 166, 242–252. DOI: 10.1016/j.jclepro.2017.07.243.
  • [5] ALARAB A., HAMAD B., ASSAAD J.J., Strength and durability of concrete containing ceramic waste powder and blast furnace slag, J. Mater. Civ. Eng., 2022, 34 (1), 04021392. DOI: 10.1061/(ASCE) MT.1943-5533.0004031.
  • [6] SIDDIQUE S., CHAUDHARY S., SHRIVASTAVA S., GUPTA T., Sustainable utilisation of ceramic waste in concrete: Exposure to adverse conditions, J. Clean. Prod., 2019, 210, 246–255. DOI: 10.1016/J.JCLEPRO. 2018.10.231.
  • [7] ZITO S.V., CORDOBA G.P., IRASSAR E.F., RAHHAL V.F., Durability of eco-friendly blended cements incorporating ceramic waste from different sources, J. Sustain. Cem.-Based Mater., 2023, 12 (1), 13–23. DOI: 10.1080/21650373.2021.2010242.
  • [8] KUMAR S., GURUSAMY S., SIVAKUMAR V., VAIYAPURI S.M., Machining performance and optimization of Inconel 718 using MWCNT by Taguchi’s method, J. Ceram. Proc. Res., 2022, 23 (6), 869–877. DOI: 10.13074/jent.2024.06.242556.
  • [9] GODINHO-CASTRO A.P., TESTOLIN R.C., JANKE L., CORRÊA A.X., RADETSKI C.M., Incorporation of gypsum waste in ceramic block production: Proposal for a minimal battery of tests to evaluate technical and environmental viability of this recycling process, Waste Manage., 2012, 32 (1), 153–157. DOI: 10.1016/j.wasman.2011.08.019.
  • [10] JUAN A., MEDINA C., GUERRA M.I., MORÁN J.M., AGUADO P.J., SÁNCHEZ DE ROJAS M.I., FRÍAS M., RODRÍGUEZ O., Re-use of ceramic wastes in construction, Ceram. Mater., 2010, 28, 197–214. DOI: 10.5772/INTECHOPEN.83933.
  • [11] KRISHNARAJA A.R., KULANTHAIVEL P., RAMSHANKAR P., WILSON V.H., PALANISAMY P., VIVEK S., SAMPATHKUMAR V., GANESHAN P., SASHIKKUMAR M.C., RAJA K., SELVARAJ S.K., Performance of polyvinyl alcohol and polypropylene fibers under simulated cementitious composites pore solution, Adv. Mater. Sci. Eng., 2022 (1), 9669803. DOI: 10.1155/2022/9669803.
  • [12] RAY S., HAQUE M., SAKIB M.N., MITA A.F., RAHMAN M.M., TANMOY B.B., Use of ceramic wastes as aggregates in concrete production: A review, J. Build. Eng., 2021, 43, 102567. DOI: 10.1016 /J.JOBE. 2021.102567.
  • [13] VERCIMAK D., Fine proportions of demolition waste recyclates in terms of functionality and application possibilities in building mixtures, E3S Web of Conferences, 2024, 550, 01024, EDP Sciences. DOI: 10.1051/e3sconf/202455001024.
  • [14] GEHRKE D.B., PAVESI T.B., ROHDEN A.B., GARCEZ M.R., Integrated approach to assess the environ-mental suitability of red ceramic waste as a supplementary cementitious material in structural concrete, J. Mater. Cycles Waste Manag., 2024, 26 (5), 3008–3023. DOI:10.1007/s10163-024-02021-6.
  • [15] AMBROSE E.E., OGIRIGBO O.R., EKOP I.E., ATTAH I.C., Compressive strength, workability, and durability performance of concrete incorporating waste ceramic tile as fine aggregate, Int. J. Pav. Res. Technol., 2024, 5, 1–2. DOI: 10.1007/s42947-024-00461-9.
  • [16] SIVAKUMAR N.K., MUTHUSAMY N., PERIASAMY S., MANIVANNAN V., Reinventing concrete: exploring strength and durability with portland slag cement, Rev. Mater., 2024, 7, 29 (2), e20240156. DOI: 10.1590/1517-7076-rmat-2024-0156.
  • [17] RAO A.U., SHETTY P.P., BHANDARY P.R., TANTRI A., YARAGAL S.C., Assessment of fly ash and ceramic powder incorporated concrete with steam-treated recycled concrete aggregates prioritising nanosilica, Emerg. Mater., 2024, 7 (2), 443–472. DOI: 10.1007/s42247-024-00639-8.
  • [18] RAMIREZ J., REMOLISAN C., COSCOS M.J., CANSECO-TUÑACAO H.A., Integrating fine ceramic tile aggregates in concrete hollow blocks, IOP Conference Series: Earth and Environmental Science, 2023, 1184 (1), 012023, IOP Publishing. DOI: 10.1088/1755-1315/1184/1/012023.
  • [19] FUGAZZOTTO M., BARONE G., MAZZOLENI P., Mortars produced by alkaline activation of construction ceramic waste: Suitability assessment within conservation issue, IJAH, 2024, 1–15. DOI: 10.1080 /15583058.2024.2396987.
  • [20] DANILLO DE ALMEIDA S., LUNA DE MELO C.E., Recycled aggregate, a sustainable source of raw material: A review, Rev. Princ., 2023, 60 (2), 370–386. DOI: http://dx.doi.org/10.18265/1517-0306a2021 id6033 (in Portugal).
  • [21] KADHAR S.A., GOPAL E., SIVAKUMAR V., ANBARASU N.A., Optimizing flow, strength, and durability in high-strength self-compacting and self-curing concrete utilizing lightweight aggregates, Rev. Ma-ter. 2024, 29, e20230336. DOI: 10.1590/1517-7076-rmat-2023-0336.
  • [22] ARASU A.N., MUTHUSAMY B., NATARAJAN B., PARTHASAARATHI R., Optimization of high performance concrete composites by using nano materials, RESM, 2023, 9 (3), 843–859. DOI: 10.17515/resm2022.602ma1213.
  • [23] SRINIVASAN S.S., MUTHUSAMY N., ANBARASU A.N., The structural performance of fiber-reinforced concrete beams with nanosilica, Rev. Mater., 2024, 29 (3), e20240194. DOI: https://orcid.org/0009-0006 -4587-1119.
  • [24] KUMAR S.N., NATARAJAN M., ARASU A.N., A comprehensive microstructural analysis for enhancing concrete’s longevity and environmental sustainability, J. Environ. Nanotechnol., 2024, 13 (2), 368–376. DOI: 10.13074/jent.2024.06.242584.
  • [25] PARTHASAARATHI R., BALASUNDARAM N., ARASU N., Analysing the impact and investigating coconut shell fiber reinforced concrete (CSFRC) under varied loading conditions, ARASET, 2024, 35 (1), 106–120. DOI: 10.37934/araset.35.1.106120.
  • [26] VARUTHAIYA M., PALANISAMY C., SIVAKUMAR V., PUSHPANATHAN G., Concrete with sisal fibered geopolymer: a behavioral study, J. Ceram. Proc. Res., 2022, 23 (6), 912–919. DOI: 10.36410/jcpr.2022.23.6.912.
  • [27] ANBARASU N.A., SIVAKUMAR V., YUVARAJ S., VEERAMANI V., VELUSAMY S., Pioneering the next frontier in construction with high-strength concrete infused by nano materials, Rev. Mater., 2025, 27 (30), e20240730. DOI: 10.1590/1517-7076-RMAT-2024-0730.
  • [28] ARASU A., NATARAJAN M., BALASUNDARAM N., PARTHASAARATHI R., Utilizing recycled nanomaterials as a partial replacement for cement to create high-performance concrete, Glob. Nest J., 2023, 25 (6), 89–92. DOI: 10.30955/gnj.004780.
  • [29] VIDYA S., JANANI E.S., SREEDEVI B., DCSNN optimized with hybrid border collie optimization and Archimedes optimization algorithms for solid waste prediction in Chennai, Environ. Prot. Eng., 2024, 50 (1), 5–25. DOI: 10.37190/epe240101.
  • [30] BERCA M., TULBURE I., Analyzing and assessing the environmental impacts of energy production, Environ. Prot. Eng., 2024, 50 (3), 27–39. DOI: 10.37190/epe240302
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-82fb0dba-dd12-4a5c-b1f6-586b00f4ffc5
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.