PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Changes in the flow and quality of water in the dam reservoir of the Mała Panew catchment (South Poland) characterized by multidimensional data analysis

Treść / Zawartość
Identyfikatory
Warianty tytułu
PL
Zmiany przepływów i jakości wód zbiornika zaporowego w zlewni rzeki Mała Panew (południowa Polska) określone z zastosowaniem wielowymiarowych analiz danych
Języki publikacji
EN
Abstrakty
EN
Multidimensional exploratory techniques, such as the Principal Component Analysis (PCA), have been used to analyze long-term changes in the flow regime and quality of water of the lowland dam reservoir Turawa (south-west Poland) in the catchment of the Mała Panew river (a tributary of the Odra). The paper proves that during the period of 1998–2016 the Turawa reservoir was equalizing the river’s water flow. Moreover, various physicochemical water quality indicators were analyzed at three measurement points (at the tributary’s mouth into the reservoir, in the reservoir itself and at the outflow from the reservoir). The water quality assessment was performed by analyzing physicochemical indicators such as water temperature, TSS, pH, dissolved oxygen, BOD5, NH4+, NOˉ3, NOˉ2, N, PO43-, P, electrolytic conductivity, DS, SO42- and Clˉ. Furthermore, the correlations between all these water quality indicators were analyzed statistically at each measurement point, at the statistical signifi cance level of p ≤ 0.05. PCA was used to determine the structures between these water quality variables at each measurement point. As a result, a theoretical model was obtained that describes the regularities in the relationships between the indicators. PCA has shown that biogenic indicators have the strongest infl uence on the water quality in the Mała Panew. Lastly, the differences between the averages of the water quality indicators of the infl owing and of the outflowing water were considered and their signifi cance was analyzed. PCA unveiled structure and complexity of interconnections between river flow and water quality. The paper shows that such statistical methods can be valuable tools for developing suitable water management strategies for the catchment and the reservoir itself.
PL
Eksploracyjne techniki wielowymiarowe, takie jak analiza składowych głównych (PCA), zostały zastosowane w celu analizy wieloletnich (lata 1998-2016) zmian przepływów i jakości wód nizinnego zbiornika zaporowego Turawa (południowo-zachodnia Polska) w zlewni rzeki Mała Panew (dopływ rzeki Odry). W pracy wykazano, że w okresie 1998-2016 zbiornik Turawa w znacznym stopniu wyrównywał przepływy wód rzeki Mała Panew. Analizowano również wskaźniki fizykochemiczne jakości wód na trzech stanowiskach pomiarowych (dopływ do zbiornika, w zbiorniku i na odpływie ze zbiornika). Ocenę jakości wody wykonano analizując wskaźniki fizykochemiczne takie jak: temperaturę wody, zawiesinę ogólną, pH, tlen rozpuszczony,BOD5, NH4+, NOˉ3, NOˉ2, N, PO43-, P, przewodność elektrolityczną, substancje rozpuszczone, siarczany SO42- - i chlorki Clˉ. Analizie statystycznej poddano również związki korelacyjne pomiędzy wszystkimi wskaźnikami jakości wody na poszczególnych stanowiskach pomiarowych, istotne statystycznie na poziomie p<0,05. W celu wykrycia struktur zachodzących między wskaźnikami jakości wody na każdym stanowisku pomiarowym, zastosowano analizę składowych głównych (PCA) (Principal Components Analysis), w efekcie której otrzymano teoretyczny model opisujący prawidłowości w zależnościach między analizowanymi wskaźnikami jakości wód. Analiza składowych głównych (PCA) wykazała, że jakość wody rzeki Mała Panew najsilniej determinowały wskaźniki biogenne. Analizowano również istotność różnic między średnimi stężeniami wskaźników jakości wody dopływającej do zbiornika i wody odpływającej ze zbiornika. Na podstawie zastosowanych metod eksploracyjnej analizy danych możliwe było rozpoznanie struktur i złożoności powiązań zachodzących pomiędzy przepływami wód oraz wskaźnikami jakości wód w rzece Mała Panew. W pracy wykazano, że metody te mogą stanowić niezbędne narzędzie w zakresie podejmowania strategicznych decyzji i rozwiązań w zakresie racjonalnego gospodarowania wodą zarówno w zlewni zbiornika jak i w zbiorniku wodnym.
Rocznik
Strony
26--41
Opis fizyczny
Bibliogr. 60 poz., rys., tab., wykr.
Twórcy
  • Wrocław University of Environmental and Life Sciences, Poland, Institute of Environmental Engineering
  • University of Opole, Poland, Department of Economic Geography and Spatial Management
Bibliografia
  • 1. Bartoszek, L. & Koszelnik, P. (2016). The qualitative and quantitative analysis of the coupled C, N, P and Si retention in complex of water reservoirs, Springer Plus, 5(1157). doi: 10.1186/s40064- 016-2836-7
  • 2. Benndorf, J. & Pütz, K. (1987). Control of eutrophication of lakes and reservoirs by means of pre-dams - II. Validation of the phosphate removal model and size optimization, Water Research, 21, pp. 839-842. doi: org/10.1016/0043-1354(87)90160-6
  • 3. Boyacioglu, H. (2006). Surface water quality assessment using factor analysis, Water SA, 32(3), pp. 389-393. Available online: (http://www.wrc.org.za/Knowledge%20Hub%20Documents/Water%20SA%20Journals/Manuscripts/2006/03/WaterSA_ 2006_03_1970.pdf (26.08.2018)).
  • 4. Boyacioglu, H. & Boyacioglu, H. (2008). Water pollution sources assessment by multivariate statistical methods in the Tahtali Basin. Turkey, Environmental Geology, 54(2), pp. 275-282. doi 10.1007/s00254-007-0815-6
  • 5. Boyacioglu, H. (2014). Spatial differentiation of water quality between reservoirs under anthropogenic and natural factors based on statistical approach, Archives of Environmental Protection, 40(1), pp. 41-50. doi: 10.2478/Aep-2014-0002
  • 6. Braatne, J.H., Rood, S.B., Goater, L., Charles, A. & Blair, C.L. (2008). Analyzing the impacts of dams on riparian ecosystems: a review of research strategies and their relevance to the Snake River through Hells Canyon, Environmental Management, 41(2), pp. 267-281. doi: 10.1007/s00267-007-9048-4
  • 7. Cachada, A., Pereira, M.E., Ferreira da Silva, E. & Duarte, A.C. (2012). Sources of potentially toxic elements and organic pollutants in an urban area subjected to an industrial impact, Environmental Monitoring and Assessment, 184, pp. 15-32. doi: 10.1007/s 10661-011-1943-8
  • 8. Castilla-Hernández, P., del Rocío Torres-Alvarado, M., Herrera-San Luis, J.A., & Cruz-López, N. (2014). Water quality of a reservoir and its major tributary located in East-Central Mexic, International Journal of Environmental Research and Public Health - 11(6), pp. 6119-6135. doi: org/10.3390/ijerph110606119
  • 9. Debels, P., Figueroa, R., Urrutia, R., Barra, R. & Niell, X. (2005). Evaluation of water quality in the Chillán River (Central Chile) using physicochemical parameters and a modified water quality index, Environmental Monitoring and Assessment, 110 (1-3), pp. 301-322. doi: 10.1007/s10661-005-8064-1
  • 10. De Melo, R.R.C., Rameh Barbosa, I.M.B., Ferreira, A.A., Lee Barbosa Firmo, A., da Silva, S. R., Cirilo, J.A. & de Aquino, R.R.B. (2017). Influence of extreme strength in water quality of the Jucazinho Reservoir, Northeastern Brazil, PE, Water, 9(955). doi:10.3390/w9120955
  • 11. Directive 2000/60/EC. The European Parliament and the Council. Directive of the European Parliament and of the Council Establishing a Framework for Community Action in the Field of Water Policy (http://eur-lex.europa.eu/resource.html?uri=cellar:5c835afb- 2ec6-4577-bdf8-756d3d694eeb.0004.02/D0C_1&format=PDF (22.10.2016)).
  • 12. Gu, Q., Wang, K., Li, J., Ma, L., Deng, J., Zheng, K., Zhang, X. & Sheng, L. (2015). Spatio-temporal trends and identification of correlated variables with water quality for drinking-water reservoirs, International Journal of Environmental Research and Public Health, 12(10), pp. 13179-13194. doi: 10.3390/ ijerph121013179
  • 13. Hejzlar, J., Anthony, S., Arheimer, B., Behrendt, H., Bouraoui, F., Grizzetti, B., Groenendijk, P., Jeuken M.H.J.L., Johnson, H., Lo Porto, A., Kronvang, B., Panagopoulos, Y., Siderius, C., Silgram, M., Venohr, M. & Żaloudik, J. (2009). Nitrogen and phosphorus retention in surface waters: an inter-comparison of predictions by catchment models of different complexity, Journal of Environmental Monitoring, 11, pp. 584-593. doi: 10.1039/b901207a
  • 14. Inspectorate of Environmental Protection in Opole (WIOŚ) - Results of water quality analysis for the Mała Panew river and Turawa reservoir, Opole 2018.
  • 15. Instruction “Water management for the Turawa reservoir on the Mała Panew river”. „Polish Waters” - Regional Board of Water Management (PGW WP - RZGW), Wrocław 2015.
  • 16. Jaguś, A. & Rzętała, M. (2011). Influence of agricultural anthropopression on water quality of the dam reservoirs, Ecological Chemistry and Engineering S, 18, 3, pp. 359-367 (http:// tchie. uni.opole.pl/ece_s/S18_3/S3_2011.pdf (08.2018)).
  • 17. Janus, L.L. & Vollenweider, R.A. (1982). Summary Report The OECD Cooperative Programm on Eutrophication Canadian Contribution. SCIENTIFIC SERIES NO. 131 Minister of Supply and Services Canada (http://lakes.chebucto.org/TPMODELS/OECD/Janus%20and%20Vollenweider,%201981.pdf (08.2018)).
  • 18. Kanownik, W., Kowalik, T., Bogdał, A. & Ostrowski, K. (2013). Quality categories of stream waters included in a Small Retention Program, Polish Journal of Environmental Studies, 22, 1, pp. 159-165 (http://www.pjoes.com/Quality-Categories-of-Stream-Waters-Included-r-nin-a-Small-Retention-Program, 88964,0,2.html (06.2018)).
  • 19. Kasza, H. (2017). Assessment of trophic state of reservoirs in Southern Poland under diversified human impact, Inżynieria Ekologiczna - Ecological Engineering, 18(1), pp. 78-87. doi: 10.12912/23920629/66989
  • 20. Kijowska-Strugała, M., Wiejaczka, Ł. & Kozłowski, R. (2016). Influence of reservoirs on the concentration of nutrients in the water of mountain rivers, Ecological Chemistry and Engineering S, 23(3), pp. 413-424. doi: 10.1515/Eces-2016-0029
  • 21. Kosierb, R. (2012). Water management of the Turawa reservoir on the Mała Panew river during flood, European Symposium Anti-Flood Defences - Today’s Problems, Paris-Orléans 28-30.03.2012 (http://www.donnees.centre.developpement-durable.gouv.fr/symposium/expose/ST4-4_pol.pdf (06.2018)).
  • 22. Kostecki, M. & Suschka, J. (2013). The successful results of Pławniowice reservoir (upper silesia region - south of Poland) restoration by hypolimnetic withdrawal, Archives of Environmental Protection, 39(1), pp. 17-25. doi: 10.2478/aep-2013-0004
  • 23. Koszelnik, P, Kaleta, J. & Bartoszek, L. (2018). An assessment of water quality in dam reservoirs, considering their aggressive properties, E3S Web of Conferences, 45, 00035. INFRAEKO. doi: org/10.1051/e3sconf/20184500035
  • 24. Kowalik, T. Bogdał, A. Kanownik, W. Ostrowski, K. & Rajda, W. (2010). Quality and functional values of waters flowing away from catchments of planned small storage reservoirs in the Beskid Makowski and Żywiecki Mts. Publishing House of the University of Agriculture in Krakow, Krakow 2010 (https://www.researchgate.net/publication/310295328_Quality_and_functional_values_of_waters_flowing_away_from_catchments_of_planned_small_storage_reservoirs_in_the_Beskid_Makowski_and_Zywiecki_ Mts (05.2018)).
  • 25. Kröger, C., Xu, A., Duan, S., Zhang, B., Eckstädt, H. & Meissner, R. (2013). The situation of sanitary systems in rural areas in the Miyun catchment, China, in: Integrated Water Resources Management in a Changing World Eds. Dietrich Borchardt and Ralf Ibisch, IWA Publishing London. doi: 10.2166/wst.2013.296
  • 26. Kumagai, T., Yoshifuji, N., Tanaka, N., Suzuki, M. & Kum, T. (2009). Comparison of soil moisture dynamics between a tropical rain forest and a tropical seasonal forest in Southeast Asia: Impact of seasonal and year-to-year variations in rainfall, Water Resources Research, 45(4), (https://agupubs.onlinelibrary.wiley.com/doi/full/10.1029/2008WR007307 (12.2018)).
  • 27. Kurunc, A., Yurekli, K. & Okman, C. (2006). Effects of Kilickaya Dam on concentration and load values of water quality constituents in Kelkit Stream in Turkey, Journal of Hydrology, 317, pp. 17-30. doi: 10.1016/j.jhydrol.2005.05.006
  • 28. Ling, T.Y., Soo, C.L., Lee-Eng Heng, T., Nyanti, L., Sim, S.F. & Grinang, J. (2016). Physicochemical characteristics of river water downstream of a large tropical hydroelectric dam, Journal of Chemistry. http://dx.doi.org/10.1155/2016/7895234
  • 29. Mazur, R., Szoszkiewicz, K., Nowak, A., Pietruczuk, K. & Christ, J. (2017). Ecological Classification of artificial reservoirs in Polish Lowlands according to Water Framework Directive Requirements, Polish Journal of Environmental Studies, 26(1), pp. 205-210. doi: 10.15244/pjoes/64306
  • 30. McCartney, M.P., Sullivan, C. & Acreman, M.C. (2001). Ecosystem impacts of large dams background. Paper Nr. 2. Prepared for IUCN/ UNEP/WCD (http://aardscience.ca/wp-content/uploads/2015/01/ Ecosystem-Impacts-of-Large-Dams.pdf (08.2018)).
  • 31. Munyao, J., Kimiti, J. & Njuru, P (2017). Water pollution in a Riparian Community: The case of river Athi in Makueni County, Kenya. Journal of Applied Life Sciences International (http://repository.seku.ac.ke/bitstream/handle/123456789/3423/Kimiti_Water%20 pollution%20in%20a%20Riparian%20community.pdf (06.2018)).
  • 32. Myronidis, D., Fotakis, D., Ioannou, K. & Sgouropoulou, K. (2018). Comparison of ten notable meteorological drought indices on tracking the effect of drought on stream flow, Hydrological Science Journal. https://doi.org/10.1080/02626667.2018.1554285
  • 33. Nthunya, L.N., Maifadi, S., Bhekie, M.B., Verliefde, A.R. & Mhlanga, S.D. (2018). Spectroscopic determination of water salinity in brackish surface water in Nandoni Dam, at Vhembe District, Limpopo Province, South Africa, Water, 10, pp. 1-13. doi:10.3390/w10080990
  • 34. Nyanti, L., Noor-Azhar, N.-I., Soo, C.L., Ling, T.Y., Sim, S.F., Grinang, J., Ganyai, T. & Lee, K.S.P. (2018). Physicochemical parameters and fish assemblages in the downstream river of a tropical hydroelectric dam subjected to diurnal changes in flow, International Journal of Ecology. doi: org/10.1155/2018/8690948
  • 35. Olds, B.P., Peterson, B.C., Koupal, K.D., Farnsworth-Hoback, K.M., Schoenebeck, C.W. & Hoback, W.W. (2011). Water quality parameters of a Nebraska reservoir differ between drought and normal conditions, Lake and Reservoir Management, 27(3), pp. 229-234. DOI: 10.1080/07438141.2011.601401
  • 36. OpenStreetMap data for this region: Poland (http://download.geofabrik.de/europe/poland.html (06.2018)).
  • 37. Paul, L. & Pütz, K. (2008). Suspended matter elimination in a pre-dam with discharge dependent storage level regulation, Limnologica, 38 (3-4), pp. 388-399. doi: org/10.1016/j.limno.2008.07.001
  • 38. Praus, P. (2005). Water quality assessment using SVD-based principal component analysis of hydrological data, Water SA, 31(4), pp. 417-422. doi: org/10.4314/wsa.v31i4.5132
  • 39. Regulation of the Minister of Environment dated 9 November 2011 on requirements for the classification of ecological status, ecological potential and chemical status of surface water bodies. Dz.U.2011.258.1549, (http://prawo.sejm.gov.pl/isap.nsf/download.xsp/WDU20112581549/0/D20111549.pdf (05.2018)).
  • 40. Regulation of the Minister of Environment dated 21 July 2016 on requirements for the classification of the status of surface water bodies and environmental quality standards for priority substances. Dz.U.2016. 1187 (http://prawo.sejm.gov.pl/isap.nsf/download.xsp/WDU20160001187/0/D20161187.pdf (05.2018)).
  • 41. Razali, N.M. & Wah, Y.B. (2011). Power comparisons of Shapiro-Wilk, Kolmogorov-Smirnov, Lilliefors and Anderson-Darling tests, Journal of Statistical Modeling and Analytics, 2(1), pp. 21-33 (file:///C:/Users/Asus/Desktop/normality_tests_comparison.pdf (12.2018)).
  • 42. Rosik-Dulewska, Cz. & Karwaczyńska U. (2008). Methods of leaching contaminants from mineral waste in the aspect of its potential utilization in hydrotechnical construction, Rocznik Ochrona Środowiska - Annual Set The Environment Protection, 10, pp. 205-219. (http://ros.edu.pl/index.php?option=com_content&view=category&id=33&Itemid=110&lang=pl (12.2018))
  • 43. Shrestha, S. & Kazama, F. (2007). Assessment of surface water quality using multivariate statistical techniques: a case study of the Fuji River Basin, Japan, Environmental Modelling & Software, 22(4), pp. 464-475. doi: 10.1016/j.envsoft.2006.02.001
  • 44. Siepak, M. & Sojka, M. (2017). Application of multivariate statistical approach to identify trace elements sources in surface waters: a case study of Kowalskie and Stare Miasto reservoirs Poland, Environmental Monitoring and Assessment, 189(8), 364. doi: 10.1007/s10661-017-6089-x
  • 45. Singh, K.P., Malik, A., Singh, V.K., Mohan, D. & Sinha, S. (2005). Chemometric data analysis of pollutants in wastewater - a case study, Analytica Chimica Acta, 550, pp. 82-91 (https:// eurekamag.com/pdf/004/004406870.pdf (06.2018)).
  • 46. Stathis, D. & Myronidis, D. (2009). Principal component analysis of precipitation in Thessaly region (Central Greece), Global NEST Journal, 11, 4, pp. 467-476, (https://journal.gnest.org/sites/ default/files/Journal%20Papers/467476_534_Stathis_11_4.pdf (12.2018).
  • 47. StatSoft, Electronic Statistics Textbook. 2011 (https://www.statsoft.pl/textbook/stathome.html (02.2018)).
  • 48. Straškraba, M. & Hocking, G. (2002). The effect of theoretical retention time on the hydrodynamice of deep river valley reservoirs, International Review of Hydrobiology, 87(1), pp. 61-83. doi: org/10.1002/1522-2632(200201)87:1<61::AID- IR0H61>3.0.C0;2-4
  • 49. Tomaszek, J.A. & Koszelnik, P. (2003). A simple model of the nitrogen retention in reservoirs, Hydrobiologia, 504, 1-3, pp. 51-58. Uhlmann, D. & Horn, W. (2006). Ecology of reservoirs. Habitats, organism. Space-time structures, Biologie in unserer Zeit, 36, pp. 92-101. doi: org/10.1002/biuz.200610306
  • 50. Varol, M., & Şen, B. (2009). Assessment of surface water quality using multivariate statistical techniques: a case study of Behrimaz Stream, Turkey. Environmental Monitoring and Assessment, 159, 543-553, doi: 10.1007/s10661-008-0650-6.
  • 51. Varol, M., Gökot, B., Bekleyen, A. & Şen, B. (2012). Spatial and temporal variations in surface water quality of the dam reservoirs in the Tigris River basin, Turkey, Catena, 11-21. doi:10.1016/j. catena.2011.11.013
  • 52. Wei, G.L., Yang, Z.F., Cui, B.S., Li, B., Chen, H., Bai, J.H. & Dong, S.K. (2009). Impact of dam construction on water quality and water self-purification capacity of the Lancang River, China, Water Resources Management, 23, pp. 1763-1780. doi: 10.1007/ s11269-008-9351-8
  • 53. Wiatkowski, M. & Paul, L. (2009). Surface water quality assessment in the Troja river catchment in the context of Włodzienin reservoir construction, Polish Journal of Environmental Studies, 18(5), pp. 923-929. (http://www.pjoes.com/Surface-Water-Quality-Assessment-in-the-Troja-r-nRiver-Catchment-in-the-Context-of,88311,0,2.html (08.2018)).
  • 54. Wiatkowski, M. & Czerniawska-Kusza, I. (2009). Use of Jedlice preliminary reservoir for water protection of Turawa dam reservoir, Oceanological and Hydrobiological Studies, XXXVIII, 1, pp. 83-91. doi: 10.2478/v10009-009-0006-8
  • 55. Wiatkowski, M. (2010). Impact of the small water reservoir Psurów on the quality and flows of the Prosna river, Archives of Environmental Protection, 36(3), pp. 83-96 (http://ipis.pan.pl/ dokumenty/archives/roczniki/2010/A0S10-3.pdf (08.2018).
  • 56. Wiatkowski, M. (2011). Influence of Słup dam reservoir on flow and quality of water in the Nysa Szalona river, Polish Journal of Environmental Studies, 20(2), pp. 467-476. (http://www.pjoes. com/Influence-of-Slup-Dam-Reservoir-on-Flow-r-nand-Quality- of-Water-in-the-Nysa-Szalona,88579,0,2.html (08.2018)).
  • 57. Wiatkowski, M. (2015). Problems of water management in the reservoir Młyny located on the Julianpolka river, Acta Scientiarum Polonorum Formatio Circumiectus, 14(3), pp. 191-203. doi: http://dx.doi.org/10.15576/ASP.FC/2015.14.3.191
  • 58. Wiatkowski, M., Rosik-Dulewska, Cz. & Kasperek, R. (2015). Inflow of to the Bukówka drinking water reservoir from the transboundary Bóbr River Basin, Rocznik Ochrona Środowiska - Annual Set The Environment Protection, 17, pp. 316-336. (http://ros.edu.pl/images/roczniki/2015/020_R0S_V17_R2015.pdf (05.2018)).
  • 59. Zhao, F., Li, C., Chen, L. & Hang, Y. (2018). An integrated method for accounting for water environmental capacity of the river- -reservoirs combination system, Water, 10(483). doi: 10.3390/ w10040483
  • 60. Zuo, Q. & Liang, S. (2015). Effects of dams on river flow regime based on IHA/RVA. Remote Sensing and GIS for Hydrology and Water Resources, IAHS Publications, 368 (Proceedings RSHS14 and ICGRHWE 14, Guangzhou, China, August 2014). doi:10.5194/piahs-368-275-2015
Uwagi
Opracowanie rekordu w ramach umowy 509/P-DUN/2018 ze środków MNiSW przeznaczonych na działalność upowszechniającą naukę (2019).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-8284a9bc-5c6e-48c5-a970-d1603aa7f3f2
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.