PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Removal of Fe++ from Wastewater Using Sludge-polymer Hybrid Adsorbents

Treść / Zawartość
Identyfikatory
Warianty tytułu
PL
Usuwanie Fe++ ze ścieków przy użyciu hybrydowych adsorbentów osadowo-polimerowych
Języki publikacji
EN
Abstrakty
EN
Removal of Fe++ by adsorption on sludge-polymer hybrid adsorbents was studied. Sludge was collected from domestic disposal wastewater. Thermal treatment of sludge particles was carriedout at 200, 400 and 600°C to improve adsorption capacity. Polyvinylidene fluoride (PVDF) commercial polymer was mixed with the sludge in different mass ratios. Surface morphology and chemical structure of treated sludge were investigated using SEM and FTIR. Parameters studied are initial concentration of Fe++, contact time, sludge dose, heat treatment of the sludge, and sludge/polymer mixing ratio. Within the present range of studied parameters the removal efficiency of Fe++increases with in-creasing sludge dose. Increasing initial concentration of Fe++from 50 to 100 ppm increases the removal efficiency by a factor of maximum of 1.73. Fur-ther increasing in concentration from 100 to 150 ppm leads to decrease in removal efficiency up to 43%. Sludge-PVDF hybrid adsorbent improved removal efficiency up to 63.6%. Experimental data fits to Freundlich linear model. The mechanism of adsorption of Fe++ by sludge adsorbent was found to take place through a monolayer and heterogeneous surface. Potential applications of the present data in removing heavy metals from industrial waste solutions were highlighted.
PL
W pracy badano usuwanie Fe++ za pomocą adsorpcji na osadowo-polimerowych adsorbentach hybrydowych. Osady pobrano z oczyszczalni ścieków komunalnych. Obróbkę termiczną osadu prowadzono w temperaturze 200, 400 i 600°C, w celu poprawy zdolności adsorpcyjnych. Fluorek poliwinylidenu (PVDF) – handlowy polimer – mieszano z osadami w różnych stosunkach masowych. Morfologia powierzchni i struktura chemiczna przetworzonego osadu była badana za pomocą SEM i FTIR. Badane parametry niezależne to: początkowe stężenie Fe++, czas kontaktu, dawka osadu, obróbka termiczna osadu, udział osadu/polimeru w mieszance. W badanych zakresach zmienności parametrów niezależnych, efektywność usuwania Fe++ wzrasta wraz ze wzrostem dawki osadu. Zwiększenie początkowego stężenia Fe++ z 50 do 100 ppm zwiększa skuteczność usuwania o współczynnik wynoszący maksymalnie 1,73. Dalsze zwiększanie stężenia od 100 do 150 ppm, prowadzi do zmniejszenia skuteczności usuwania do 43%. Hybrydowy adsorbent poprawił skuteczność usuwania aż do 63,6%. Dane doświadczalne odpowiadają liniowej izotermie Freundlicha. Adsorpcja Fe++ przez adsorbent osadowy zachodzi poprzez monowarstwę i heterogeniczną powierzchnię. Podkreślono możliwość zastosowania uzyskanych wyników do usuwaniu metali ciężkich ze ścieków przemysłowych.
Rocznik
Strony
28--45
Opis fizyczny
Bibliogr. 48 poz., tab., rys.
Twórcy
  • King Abdulaziz University, Rabigh, Saudi Arabia
  • Alexandria University, Egypt
autor
  • King Abdulaziz University, Jeddah, Saudi Arabia
  • King Abdulaziz University, Rabigh, Saudi Arabia
  • Aswan University, Egypt
autor
  • King Abdulaziz University, Rabigh, Saudi Arabia
  • Higher Technological Institute, Tenth of Ramdan City, Egypt
Bibliografia
  • 1. Abdel-Aziz, M.H. (2013). Production of copper powder from wastewater containing CuSO4 and alcoholic additives in a modified stirred tank reactor by cementation. Hydrometallurgy, 109, 161-167.
  • 2. Abdel-Aziz, M.H., Amin, N.K., El-Ashtoukhy, E-S.Z. (2013). Removal of heavy metals from aqueous solutions by liquid cation exchanger in a jet loop contactor. Hydrometallurgy, 137, 126-132.
  • 3. Abdel-Aziz, M.H., Bassyouni, M., Mansour, I.A.S., Nagi, A. (2014). Wall to liquid mass transport and diffusion controlled corrosion in fixed bed reactors. J. Ind. Eng. Chem., 20, 2650-2656.
  • 4. Abdel-Ghani, N.T., Hefray, M., EL-Chaghaby, G.A.F. (2007). Removal of Lead from aqueous solution using low cost abundantly available adsorbent. Int.J. Environ. Sci. Tech., 4, 67-73.
  • 5. Andrey, B., Svetlana, B., David, C.L., Teresa, J. (2001). Sewage sludge-derived materials as efficient adsorbents for removal of hydrogen sulphide. Environ. Sci. Technol., 35, 1537-1543.
  • 6. Anfruns, A., Martin, M.J., Montes-Moran, M.A. (2011). Removal of odorous VOCs using sludge-based adsorbents. Chem. Eng. J., 166, 1022-1031.
  • 7. Bandosz, T.J., Block, K. (2006). Effect of pyrolysis temperature and time on catalytic performance of sewage sludge/industrial sludge-based composite adsorbent. Appl. Catal. B-Environ., 67, 77-85.
  • 8. Betz, N., Begue, J., Goncalves, M., Gionnet, K., Déléris, G., Le Moeel, A. (2003). Functionalisation of PAA radiation grafted PVDF. J. Nuclear Instruments and Methods in Physics Research Section B: Beam Interactions with Materials and Atoms, 208, 434-441.
  • 9. Bourioug, M., Alaoui-Sehmer, L., Laffray, X., Benbrahim, M., Aleya, L., Alaoui- Sossé, B. (2015). Sewage sludge fertilization in larch seedlings: Effects on trace metal accumulation and growth performance. Ecological Engineering, 77, 216-224.
  • 10. Chen, J.W., Zhao, Y.M. (2000). Relation between water absorbency and reaction conditions in aqueous solution polymerization of polyacrylate super absorbents. J. Applied Polymer Science, 75, 808-814.
  • 11. Chen, X., Jeyaseelan, S. (2001). Study of sewage sludge pyrolysis mechanism and mathematical modelling. J. Environ. Eng., 127, 585-593.
  • 12. Chen, M., Blanc, D., Gautier, M., Mehu, J., Gourdon, R. (2013). Environmentaland technical assessments of the potential utilization of sewage sludge ashes (SSAs) as secondary raw materials in construction. Waste Management, 33, 1268-1275.
  • 13. Cieślik, B.M., Namieśnik, J., Konieczka, P. (2015). Review of sewage sludgemanagement: standards, regulations and analytical methods. J. CleanerProduction, 90, 1-15.
  • 14. Crini, G. (2006). Non-conventional low-cost adsorbents for dye removal: A review. Bioresource Technology, 97, 1061-1085.
  • 15. Egashira, R., Tanabe, S., Habaki, H. (2013). Removal of Heavy Metals from Model Mine Wastewater by Adsorption Using Mongolian Natural Zeolites. J. Chem. Eng. Japan, 46, 50-55.
  • 16. El-Ashtoukhy, E-S.Z., Abdel-Aziz, M.H. (2013). Removal of copper from aqueous solutions by cementation in a bubble column reactor fitted with horizontal screens. Int. J. Min. Process., 121, 65-69.
  • 17. Foo, K.Y., Hameed, B.H. (2010). Insights into the modeling of adsorption isotherm system. Chem. Eng. J., 156, 2-10.
  • 18. Freundlich, H.M.F. (1906). Over the adsorption in solution. J. Phys. Chem., 57, 385-471.
  • 19. Fu, F., Wang, Q. (2011). Removal of heavy metal ions from wastewaters: A review. J. Environmental Management, 92, 407-418.
  • 20. Gros, F., Baup, S., Aurousseau, M. (2008). Intensified recovery of copper in solution: Cementation onto iron in fixed or fluidized bed under electromagnetic field. Chem. Eng. Process., 47, 295-302.
  • 21. Gutub, S.A., Bassyouni, M., Abdel-hamid, S.M.-S. (2013). Dissolved solids adsorption of freshwater using synthesized bio-foam composite. Life Science Journal, 10, 464-471.
  • 22. Huasong, B., Zhongyan, Z. (1999). Use of sewage sludge for manufacturing adsorbent. Environ. Sci., 20, 56-59.
  • 23. JornWong, S.K., Phunchareon, P. (1999). Influence of reaction parameters on water absorption of neutralized poly (acrylic-co-acrylamide) synthesized by inverse suspension polymerization. J. Applied polymer Science, 72, 1349-1366.
  • 24. Kargi, F., Ozmıhc, S. (2005). Comparison of adsorption performances of powdered activated sludge and powdered activated carbon for removal of turquoise blue dyestuff. Process Biochem., 40, 2539-2544.
  • 25. Langmuir, I. (2012). The constitution and fundamental properties of solids and liquids. J. Am. Chem. Soc., 38, 2221-2295. Lin, Q.H., Cheng, H., Chen, G.Y. (2012). Preparation and characterization of carbonaceous adsorbents from sewage sludge using a pilot-scale microwave heating equipment. J. Analytical and Applied Pyrolysis, 93, 113-119.
  • 26. Lu, G.Q., Low, J.C.F., Liu, C.Y., Lua, A.C. (1995). Surface area development of sewage sludge during pyrolysis. Fuel, 74, 344-348.
  • 27. Lucena, L.C.D.L., Juca, J.F.T., Soares, J.B., Filho, P.G.T.M. (2014). Use of wastewater sludge for base and sub-base of road pavements. Transportation Research Part D: Transport and Environment, 33, 210-219.
  • 28. Martin, M.J., Serra, E., Ros, A., Balaguer, M.D., Rigola, M. (2004). Carbonaceous adsorbents from sewage sludge and their application in a combined activated sludge-powdered activated carbon (AS-PAC) treatment. Carbon, 42, 1389-1394.
  • 29. Mazzei, R.O., Bermúdez, G.G., Tadey, D., Rocco, C. (2004). Grafting of poly (vinylidene fluoride) foils induced by swift heavy ions. J. Nuclear Instruments and Methods in Physics Research Section B: Beam Interactions with Materials and Atoms, 218, 313-317.
  • 30. Namasivayam, C., Muniasamy, N., Gayatri, K., Rani, M., Ranganathan, K. (1996). Removal of dyes from aqueous solutions by cellulosic waste orange peel. Bioresource Technology, 57, 37-43.
  • 31. Otero, M., Rozada, F., Calvo, L.F. (2003). Elimination of organic water pollutants using adsorbents obtained from sewage sludge. Dyes Pigments, 57, 55-65.
  • 32. Pan, S., Lin, C., Tseng, D. (2003). Reusing sewage sludge ash as adsorbent for copper removal from wastewater. Resources Conservation & Recycling, 39, 79-90.
  • 33. Pan, Z., Tian, J., Xu, G., Li, J., Li, G. (2011). Characteristics of adsorbents made from biological, chemical and hybrid sludges and their effect on organics removal in wastewater treatment. Water Research, 45, 819-827.
  • 34. Pang, M., Kano, N., Imaizumi, H. (2014). Adsorption of Heavy Metal onto Activated Carbon Modified with Potassium Permanganate. J. Chem. Eng. Japan, 14, 386-391.
  • 35. Rozada, F., Otero, M., Moran, A., Garcia, A.I. (2008). Adsorption of heavy metals onto sewage sludge-derived materials. Bioresource Technology, 99, 6332-6338.
  • 36. Seredych, M., Bandosz, T.J. (2006). Removal of copper on composite sewage sludge/industrial sludge-based adsorbents: the role of surface chemistry. J. Colloid Interf. Sci., 302, 379-388.
  • 37. Smith, K.M., Fowler, G.D., Pullket, S., Graham, N.J.D. (2009). Sewage sludgebased adsorbents: A review of their production properties and use in water treatment applications. Water Research, 43, 2569-2594.
  • 38. Smol, M., Kulczycka, J., Henclik, A., Gorazda, K., Wzorek, Z. (2015). The possible use of sewage sludge ash (SSA) in the construction industry as a way towards a circular economy. J. Cleaner Production, 95, 45-54.
  • 39. Sprynsky M. (2009). Solid–liquid–solid extraction of heavy metals (Cr, Cu, Cd, Ni and Pb) in aqueous systems of zeolite–sewage sludge. J. Hazard. Mater., 161, 1377-1383.
  • 40. Teker, M., Imamoglo, M., Saltabas, O. (1999). Adsorption of Copper and Cadmium ions by activated carbon from rice Hulls. Turk. J. Chem., 23, 185-191.
  • 41. Wang, X.N., Zhu, N.W., Yin, B.K. (2008). Preparation of sludge based activatedcarbon and its application in dye wastewater treatment. J. Hazard. Mater., 153, 22-27.
  • 42. Wu, S., Qi, Y., Yue, Q., Gao, B., Gao, Y., Fan, C., He, S. (2015). Preparation of ceramic filler from reusing sewage sludge and application in biological aerated filter for soy protein secondary wastewater treatment. J. Hazardous Materials, 283, 608-616.
  • 43. Xiaoge, C., Jeyaseelan, S., Graham, N. (2002). Physical and chemical properties study of the activated carbon made from sewage sludge. Waste Management, 22, 755-760.
  • 44. Xu, Z., Li, L., Wu, F., Tan, S., Zhang, Z. (2005). The application of the modified
  • 45. PVDF ultrafiltration membranes in further purification of Ginkgo biloba extraction. J. Membr. Sci., 255, 125-131.
  • 46. Yeow, M.L., Liu, Y., Li, K. (2005). Preparation of porous PVDF hollow fiber membrane via a phase inversion method using lithium perchlorate (LiClO4) as an additive. J. Membrane Sci., 258, 16-22.
  • 47. Yu, L., Zhong, Q. (2006). Preparation of adsorbents made from sewage sludges for adsorption of organic materials from wastewater. J. Hazardous Materials, B137, 359-366.
  • 48. Zhai, Y., Wei, X., Zeng, G., Zhang, D., Chu, K. (2004). Study of adsorbent derived from sewage sludge for the removal of Cd2+, Ni2+ in aqueous solutions. Sep. Purif. Technol., 38, 191-196.
Uwagi
PL
Opracowanie ze środków MNiSW w ramach umowy 812/P-DUN/2016 na działalność upowszechniającą naukę.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-8248c621-6c3c-44bc-8770-fd02b7110b51
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.