Identyfikatory
Warianty tytułu
Analiza SWOT możliwości recyklingu odpadów budowlanych w polskiej infrastrukturze drogowej
Języki publikacji
Abstrakty
In recent years, there has been a significant increase in the level of waste generated from construction and renovation (C&D). In the European Union countries, they constitute approximately 40% of all waste generated annually. C&D waste collected in landfills often has a negative impact on the natural environment. The solution to this problem is their reuse in buildings and road works. Currently, the road industry is one of the best-developing construction sectors, which creates great recycling opportunities. The aim of the article is to identify waste and assess the possibility of its reuse in road construction using SWOT analysis. As much as 80% of identified construction waste can be reused. The most useful waste is basalt grit and stone material (100%), and the least useful is recycled tar (11.1%).
W ostatnich latach obserwuje się znaczny wzrost poziomu generowanych odpadów z budowy i remontów (C&D). W krajach Unii Europejskiej stanowią one rocznie ok. 40% wszystkich generowanych odpadów. Odpady C&D gromadzone na składowiskach odpadów nierzadko wpływają negatywnie na środowisko naturalne. Rozwiązaniem tego problemu jest ich powtórne wykorzystanie przy robotach kubaturowych oraz drogowych. Obecnie branża drogowa jest jednym z najlepiej rozwijających się sektorów budowlanych, co stwarza duże możliwości recyklingowe. Celem artykułu jest identyfikacja odpadów wraz z oceną możliwości ich ponownego wykorzystania przy budowie dróg za pomocą analizy SWOT. Aż 80% zidentyfikowanych odpadów budowlanych nadaje się do ponownego wykorzystania. Najbardziej użytecznym odpadem jest grys bazaltowy i materiał kamienny (100%), najmniej użytecznym jest smoła z odzysku (11.1%).
Czasopismo
Rocznik
Tom
Strony
art. no. 796
Opis fizyczny
Bibliogr. 96 poz., rys., tab., wykr.
Twórcy
autor
- Czestochowa University of Technology, Faculty of Civil Engineering
autor
- Czestochowa University of Technology, Faculty of Civil Engineering, J.H. Dabrowskiego Street 69, 42-201 Czestochowa, Poland
Bibliografia
- Abdy, C., Zhang, Y., Wang, J., Yang, Y., Artamendi, I., & Allen, B. (2022). Pyrolysis of polyolefin plastic waste and potential applications in asphalt road construction: A technical review. Resources, Conservation & Recycling, 180, 106213. https://doi.org/10.1016/j.resconrec.2022.106213
- Act from 3 March 2022. Announcement of the Speaker of the Sejm of the Republic of Poland on the announcement of the uniform text of the Waste Act. Journal of Laws 2022, item 699. https://isap.sejm.gov.pl/isap.nsf/DocDetails.xsp?id=WDU20220000699 (in Polish).
- Adamczyk, J., & Dylewski, R. (2010). Recycling of Construction Waste in Terms of Sustainable Building. Problems of Sustainable Development, 5(2), 125-131. https://yadda.icm.edu.pl/baztech/element/bwmeta1.element.baztech-article-BPL2-0017-0024?utm_source=chatgpt.com (in Polish).
- Ahmad, M. (2011). Utilizing Building Material Waste in Construction as a Factor of Balanced Development. Studies of the national spatial development committee of the Polish Academy of Sciences, 142, 478-490. http://cejsh.icm.edu.pl/cejsh/element/bwmeta1.element.ojs-issn-0079-3507-year-2011-issue-142-article-bwmeta1_element_oai-journals-pan-pl-96763 (in Polish).
- Akbas, M., Ozaslan, B., & Iyisan, R. (2023). Utilization of recycled concrete aggregates for developing high- performance and durable flexible pavements. Construction and Building Materials, 407, 133479. https://doi.org/10.1016/j.conbuildmat.2023.133479
- Al-Ali, E. A., & Kuwait, W. K. E. (2023). Effect of using recycled aggregates as road sub-base materials: A case study from Kuwait City. Journal of Science, 50(4), 739-745. https://doi.org/10.1016/j.kjs.2023.02.029
- Almokdad, M., & Zentar, R. (2023). Characterization of recycled dredged Sediments: Toward circular economy in road construction. Construction and Building Materials, 402, 132974. https://doi.org/10.1016/j.conbuildmat.2023.132974
- Amarilla, R. S. D., Scoczynski Ribeiro, R., de Avelar Gomes, M. H., Pereira Sousa, R., Sant’Ana, L. H., & Catai, R. E. (2021). Acoustic barrier simulation of construction and demolition waste: A sustainable approach to the control of environmental noise. Applied Acoustics, 182, 108201. https://doi.org/10.1016/j.apacoust.2021.108201
- Anburuvel, A., Sathiparan, N., Dhananjaya, G. M. A., & Anuruththan, A. (2023). Characteristic evaluation of geopolymer based lateritic soil stabilization enriched with eggshell ash and rice husk ash for road construction: An experimental investigation. Construction and Building Materials, 387, 131659. https://doi.org/10.1016/j.conbuildmat.2023.131659
- Ashish, P. K., Sreeram, A., Xu, X., Chandrasekar, P., Jagadeesh, A., Adwani, D., & Padhan, R. K. (2023). Closing the Loop: Harnessing waste plastics for sustainable asphalt mixtures - A comprehensive review. Construction and Building Materials, 400, 132858. https://doi.org/10.1016/j.conbuildmat.2023.132858
- Bergonzoni, M., Melloni, R., & Botti, L. (2023). Analysis of sustainable concrete obtained from the by-products of an industrial process and recycled aggregates from construction and demolition waste. Procedia Computer Science, 217, 41-51. https://doi.org/10.1016/j.procs.2022.12.200
- Bizon-Górecka, J., & Matuszczak, M. (2017). Manufacturability analysis of steel. Journal of Civil Engineering, Environment and Architecture, 34(64), 225-232. https://doi.org/10.7862/rb.2017.94 (in Polish).
- Bocci, E., & Prosperi, E. (2023). Recyclability of reclaimed asphalt rubber pavement. Construction and Building Materials, 403, 133040. https://doi.org/10.1016/j.conbuildmat.2023.133040
- Boom, Y. J., Xuan, D. L., Enfrin, M., Swaney, M., Masood, H., Pramanik, B. K., Robert, D., & Giustozz, F. (2023). Engineering properties, microplastics and emissions assessment of recycled plastic modified asphalt mixtures. Science of the Total Environment, 893, 164869. https://doi.org/10.1016/j.scitotenv.2023.164869
- Brycht, N. (2020). Construction waste management in rural areas of the Czestochowa district in the aspect of environmental safety. Conference Quality Production Improvement, 2(1), 60-68. https://sciendo.com/pl/article/10.2478/cqpi-2020-0008
- Brycht, N. (2021). Assessment of the quality of the repair process of local roads in the rural areas of the Częstochowa and Kłobuck poviats in the context of road safety. Production Engineering Archives, 27(4), 232-241. https://doi.org/10.30657/pea.2021.27.31
- Caro, D., Lodato, C., Damgaard, A., Cristobal, J., Foster, G., Flachenecker, F., & Tonini, D. (2023). Environmental and socio-economic effects of construction and demolition waste recycling in the European Union. Science of the Total Environment, 908, 168295. https://doi.org/10.1016/j.scitotenv.2023.168295
- Commission Decision of 18 December 2014 amending Decision 2000/532/EC on the list of waste pursuant to Directive 2008/98/EC of the European Parliament and of the Council, Pub. L. No. 32014D0955, 370 OJ L (2000). https://eur-lex.europa.eu/eli/dec/2014/955/oj/eng
- Czajkowska, A., Raczkiewicz, W., & Ingaldi, M. (2023). Determination of the linear correlation coefficient between Young’s modulus and the compressive strength in fibre-reinforced concrete based on experimental studies. Production Engineering Archives, 29(3), 288-297. https://doi.org/10.30657/pea.2023.29.33
- Dębska, B., Krasoń, J., & Lichołai, L. (2020). Application of Taguchi method for the design of cement mortars containing waste materials. Construction of Optimized Energy Potential, 9(1), 15-26. https://doi.org/10.17512/bozpe.2020.1.02
- Dębska, B., Krasoń, J., & Lichołaj, L. (2021). The evaluation of the possible utilization of waste glass in sustainable mortars. Construction of Optimized Energy Potential, 9(2), 7-15. https://doi.org/10.17512/bozpe.2020.2.01
- Devènes, J., Brütting, J., Küpfer, C., Bastien-Masse, M., & Fivet, C. (2022). Re:Crete – Reuse of concrete blocks from cast-in-place building to arch footbridge. Structures, 43, 1854-1867. https://doi.org/10.1016/j.istruc.2022.07.012
- Duda, A., Sobala, D., Siwowski, T., & Kaleta, D. (2016). The use of waste tyre rubber in civil engineering. Archives of Institute of Civil Engineering, 21, 97-111. https://yadda.icm.edu.pl/baztech/element/bwmeta1.element.baztech-fde0d24d-ee76-4781-ac6e-ef1136a5301c (in Polish).
- European Asphalt Pavement Association. (2021). Asphalt in figures. https://eapa.org/asphalt-in-figures/
- Eurostat. (2023a, September 19). EU key indicators. https://ec.europa.eu/eurostat
- Eurostat. (2023b, September 19). Waste statistics. https://ec.europa.eu/eurostat/statistics-explained/index.php?title=Waste_statistics#Total_waste_generation
- Eurostat. (2024, January 6). Database. https://ec.europa.eu/eurostat/web/main/data/database
- Fanijo, E. O., Temitope Kolawole, J., Babafemi, A. J., & Liu, J. (2023). A comprehensive review on the use of recycled concrete aggregate for pavement construction: Properties, performance, and sustainability. Cleaner Materials, 9, 100199. https://doi.org/10.1016/j.clema.2023.100199
- Garzón, E., Martínez-Martínez, S., Pérez-Villarrejo, L., & Sánchez-Soto, P. J. (2022). Assessment of construction and demolition wastes (CDWs) as raw materials for the manufacture of low-strength concrete and bases and sub-bases of roads. Materials Letters, 320, 132343. https://doi.org/10.1016/j.matlet.2022.132343
- Gholamhosein, T. M., Alireza, A., Amanj, H. A., & Gholamreza, A. (2020). Evaluating and improving the construction and demolition waste technical properties to use in road construction. Transportation Geotechnics, 23, 100349. https://doi.org/10.1016/j.trgeo.2020.100349
- Grygo, R., Bujnarowski, K., & Prusiel, J. A. (2022). Analysis of the possibility of using plastic post-production waste in construction. Economics and Environment, 81(2), 241-256. https://doi.org/10.34659/eis.2022.81.2.467
- Guo, Y. C., Li, X. M., Zhang, J., & Lin, J. X. (2023). A review on the influence of recycled plastic aggregate on the engineering properties of concrete. Journal of Building Engineering, 79, 107787. https://doi.org/10.1016/j.jobe.2023.107787
- Helbrych, P. (2021). Effect of dosing with propylene fibers on the mechanical properties of concretes. Construction of Optimized Energy Potential, 10(2), 39-44. https://doi.org/10.17512/bozpe.2021.2.05
- Helms, M. M., & Nixon, J. (2010). Exploring SWOT analysis – where are we now?: A review of academic research from the last decade. Journal of Strategy and Management, 3(3), 215-251. https://doi.org/10.1108/17554251011064837
- Ibrahim, H., Marini, S., Desidery, L., & Lanotte, M. (2023). Recycled plastics and rubber for green roads: The case study of devulcanized tire rubber and waste plastics compounds to enhance bitumen performance. Resources, Conservation & Recycling Advances, 18, 200157. https://doi.org/10.1016/j.rcradv.2023.200157
- Iwanski, M., Mazurek, G., Buczynski, P., & Iwanski, M. M. (2022). Effects of hydraulic binder composition on the rheological characteristics of recycled mixtures with foamed bitumen for full depth reclamation. Construction and Building Materials, 330, 127274. https://doi.org/10.1016/j.conbuildmat.2022.127274
- Iżykowska-Kujawa, M. (2013). Construction waste management – technologies applied. Ecological Engineering & Environmental Technology, 33, 49-60. https://doi.org/10.12912/23920629/344
- Jackiewicz-Rek, W., & Konopska-Piechurska, M. (2013). Zrównoważony rozwój technologii nawierzchni betonowych – aspekty funkcjonalne. Budownictwo, Technologie, Architektura, 1, 36-40. https://yadda.icm.edu.pl/baztech/element/bwmeta1.element.baztech-147e8af6-63fd-4359-b23f-547c62d2f9c5 (in Polish).
- Jackson, S. E., Joshi, A., & Erhardt, N. L. (2003). Recent research on team and organizational diversity: SWOT analysis and implications. Journal of Management, 29(6), 801-830. https://doi.org/10.1016/S0149-2063(03)00080-1
- Jura, J., & Ulewicz, M. (2021). Assessment of the possibility of using fly ash from biomass combustion for concrete. Materials, 14(21), 6708. https://doi.org/10.3390/ma14216708
- Juveria, F., Rajeev, P., Jegatheesan, P., & Sanjayan, J. (2023). Impact of stabilisation on mechanical properties of recycled concrete aggregate mixed with waste tyre rubber as a pavement material. Case Studies in Construction Materials, 18, e02001. https://doi.org/10.1016/j.cscm.2023.e02001
- Kalak, T., Szypura, P., Cierpiszewski, R., & Ulewicz, M. (2023). Modification of Concrete Composition Doped by Sewage Sludge Fly Ash and Its Effect on Compressive Strength. Materials, 16(11), 4043. https://doi.org/10.3390/ma16114043
- Kalinowska-Wichrowska, K., Pawluczuk, E., Bołtryk, M., Jimenez, J. R., Fernandez-Rodriguez, J. M., & Suescum Morales, D. (2022). The Performance of Concrete Made with Secondary Products—Recycled Coarse Aggregates, Recycled Cement Mortar, and Fly Ash–Slag Mix. Materials, 15(4), 1438. https://doi.org/10.3390/ma15041438
- Karthikeyan, K., Kothandaraman, S., & Sarang, G. (2023). Perspectives on the utilization of reclaimed asphalt pavement in concrete pavement construction: A critical review. Case Studies in Construction Materials, 19, e02242. https://doi.org/10.1016/j.cscm.2023.e02242
- Kox, S., Vanroelen, G., Van Herck, J., de Krem, H., & Vandoren, B. (2019). Experimental evaluation of the high-grade properties of recycled concrete aggregates and their application in concrete road pavement construction. Case Studies in Construction Materials, 11, e00282. https://doi.org/10.1016/j.cscm.2019.e00282
- Król, J. (2021). Nowe rozporządzenie w sprawie utraty statusu odpadów destruktu asfaltowego. Drogownictwo, 11-12, 328-334. https://yadda.icm.edu.pl/baztech/element/bwmeta1.element.baztech-158f0812-2932-4d8d-9107-277f0a44bd7a/c/nr_11-12_s_328-334_Krol.pdf (in Polish).
- Ligabue, M. L., Saburit, A., Lusvardi, G., Malferrari, D., Garcia-Ten, J., & Monfort, E. (2022). Innovative use of thermally treated cement-asbestos in the production of foaming materials: Effect of composition, foaming agent, temperature and reaction time. Construction and Building Materials, 335, 127517. https://doi.org/10.1016/j.conbuildmat.2022.127517
- Llopis-Castelló, D., Alonso-Troyano, C., Álvarez-Troncoso, P., Marzá-Beltrán, A., & García, A. (2022). Design of Sustainable Asphalt Mixtures for Bike Lanes Using RAP and Ceramic Waste as Substitutes for Natural Aggregates. Sustainability, 14(23), 15777. https://doi.org/10.3390/su142315777
- Maduta, C., Kakoulaki, G., Zangheri, P., & Bavetta, M. (2022). Towards energy efficient and asbestos-free dwellings through deep energy renovation. https://doi.org/10.2760/00828
- Malazdrewicz, S., Ostrowski, K. A., & Sadowski, Ł. (2023). Self-compacting concrete with recycled coarse aggregates from concrete construction and demolition waste – Current state-of-the art and perspectives. Construction and Building Materials, 370, 130702. https://doi.org/10.1016/j.conbuildmat.2023.130702
- Mantalovas, K., Di Mino, G., Jimenez Del Barco Carrion, A., Keijzer, E., Kalman, B., Parry, T., & Lo Presti, D. (2020). European National Road Authorities and Circular Economy: An Insight into Their Approaches. Sustainability, 12(17), 7160. https://doi.org/10.3390/su12177160
- Masi, G., Michelacci, A., Manzi, S., & Bignozzi, M. C. (2022). Assessment of reclaimed asphalt pavement (RAP) as recycled aggregate for concrete. Construction and Building Materials, 341, 127745. https://doi.org/10.1016/j.conbuildmat.2022.127745
- Matuszko, L., Parzych, J., & Hozer, J. (2018). The low-energy building – new trends of the construction industry. Studies and Works Faculty of Economics Finance and Management University of Szczecin. Quantitative Methods in Economics, 54(1), 21-31. https://doi.org/10.18276/sip.2018.54/1-02 (in Polish).
- Matuszny, M. (2020). Building decision trees based on production knowledge as support in decision-making process. Production Engineering Archives, 26(2), 36-40. https://doi.org/10.30657/pea.2020.26.08
- Miranda, H. M. B., Domingues, D., & João Rato, M. (2023). The influence of recycled plastics added via the dry process on the properties of bitumen and asphalt mixtures. Transportation Engineering, 13, 100197. https://doi.org/10.1016/j.treng.2023.100197
- Moasas, A. M., Amin, M. N., Khan, K., Ahmad, W., Al-Hashem, M. N. A., Deifalla, A. F., & Ahmad, A. (2022). A worldwide development in the accumulation of waste tires and its utilization in concrete as a sustainable construction material: A review. Case Studies in Construction Materials, 17, e01677. https://doi.org/10.1016/j.cscm.2022.e01677
- Nandal, M., Sood, H., & Gupta, P. K. (2023). A review study on sustainable utilisation of waste in bituminous layers of flexible pavement. Case Studies in Construction Materials, 19, e02525. https://doi.org/10.1016/j.cscm.2023.e02525
- Ołdakowska, E. (2021). Worn vehicle tyres in Polish road construction – ecology, law, use, and economics. Economics and Environment, 79(4), 87-96. https://doi.org/10.34659/2021/4/29
- Ołdakowska, E., & Ołdakowski, J. (2021). Financial aspect of using the asphalt granulate in mixtures designed for road substructures. Economics and Environment, 77(2), 81-94. https://doi.org/10.34659/2021/2/13
- Pateriya, A. S., Robert, D. J., Dharavath, K., & Soni, S. K. (2022). Stabilization of marble wastes using cement and nano materials for subgrade applications. Construction and Building Materials, 326, 126865. https://doi.org/10.1016/j.conbuildmat.2022.126865
- Pawluk, K. (2010). The new methods of neutralizing the construction wastes containing asbestos. Scientific Review – Engineering and Environmental Sciences, 49(3), 38-47. (in Polish).
- Pereira, P. M., & Vieira, C. S. (2022). Literature Review on the Use of Recycled Construction and Demolition Materials in Unbound Pavement Applications. Sustainability, 14(21), 13918. https://doi.org/10.3390/su142113918
- Pickton, D. W., & Wright, S. (1998). What's swot in strategic analysis? Strategic Change, 7(2), 101-109. https://doi.org/10.1002/(SICI)1099-1697(199803/04)7:2<101::AID-JSC332>3.0.CO;2-6
- Piercy, N., & Giles, W. (1989). Making SWOT analysis work. Marketing Intelligence & Planning, 7(5/6), 5-7. https://doi.org/10.1108/EUM0000000001042
- Pietrzak, A. (2022). The use of Polymer Recyclates in the Technology of Concrete Composites Production. In N. Radek (Ed.), Terotechnology XII (pp. 83-89). Millersville: Materials Research Forum. https://doi.org/10.21741/9781644902059-13
- Pietrzak, A., & Ulewicz, M. (2023). Influence of Post-Consumer Waste Thermoplastic Elastomers Obtained from Used Car Floor Mats on Concrete Properties. Materials, 16(6), 2231. https://doi.org/10.3390/ma16062231
- Piñones, P., Derpich, I., & Venegas, R. (2023). Circular Economy 4.0 Evaluation Model for Urban Road Infrastructure Projects, CIROAD. Sustainability, 15(4), 3205. https://doi.org/10.3390/su15043205
- Popławski, J., & Lelusz, M. (2023). Assessment of Sieving as a Mean to Increase Utilization Rate of Biomass Fly Ash in Cement-Based Composites. Applied Sciences, 13(3), 1659. https://doi.org/10.3390/app13031659
- Puyt, R. W., Lie, F. B., De Graaf, F. J., & Wilderom, C. P. M. (2020). Origins of SWOT analysis. Academy of Management Proceedings, 2020(1), 17416. https://doi.org/10.5465/AMBPP.2020.132
- Radević, A., Isailović, I., Wistuba, M. P., Zakić, D., Orešković, M., & Mladenović, G. (2020). The Impact of Recycled Concrete Aggregate on the Stiffness, Fatigue, and Low-Temperature Performance of Asphalt Mixtures for Road Construction. Sustainability, 12(10), 3949. https://doi.org/10.3390/su12103949
- Regulation of the Minister of Climate and Environment of December 23, 2021 on specifying detailed conditions for losing the waste status for reclaimed asphalt waste. Journal of Laws 2021, item 2468. https://isap.sejm.gov.pl/isap.nsf/DocDetails.xsp?id=WDU20210002468 (in Polish).
- Rout, M. K. D., Biswas, S., Shubham, K., & Sinha, A. K. (2023). A systematic review on performance of reclaimed asphalt pavement (RAP) as sustainable material in rigid pavement construction: Current status to future perspective. Journal of Building Engineering, 76, 107253. https://doi.org/10.1016/j.jobe.2023.107253
- Saberian, M., Tajaddini, A., Li, J., Zhang, G., Wang, L., Sun, D., Maqsood, T., & Roychand, R. (2023). Mechanical properties of polypropylene fibre reinforced recycled concrete aggregate for sustainable road base and sub-base applications. Construction and Building Materials, 405, 133352. https://doi.org/10.1016/j.conbuildmat.2023.133352
- Sagan, J., & Sobotka, A. (2016). Principles and examples of effective waste management on site. Builder, 20(10), 84-86. http://buildercorp.pl/wp-content/uploads/2017/03/JAK_GOSPODAROWAC.pdf (in Polish).
- Sapkota, K., Yaghoubi, E., Wasantha, P. L. P., Van Staden, R., & Fragomeni, S. (2023). Mechanical Characteristics and Durability of HMA Made of Recycled Aggregates. Sustainability, 15(6), 5594. https://doi.org/10.3390/su15065594
- Sas, W., & Sobańska, K. (2010). Recycling as a method of reuse the material coming from pavement reconstruction works. Scientific Review – Engineering and Environmental Management, 1(47), 53-64.
- Scopus Preview. (2023, November 2). https://www.scopus.com/search/form.uri?display=basic#basic
- Shamsuyeva, M., & Endres, H. J. (2021). Plastics in the context of the circular economy and sustainable plastics recycling: Comprehensive review on research development, standardization and market. Composites Part C: Open Access, 6, 100168. https://doi.org/10.1016/j.jcomc.2021.100168
- Silvestre, G. R., Fleury, M. P., Lins da Silva, J., & Santos, E. C. G. (2023). Use of Recycled Construction and Demolition Waste (RCDW) in Geosynthetic-Reinforced Roadways: Influence of Saturation Condition on Geogrid Mechanical Properties. Sustainability, 15(12), 9663. https://doi.org/10.3390/su15129663
- Statistics Poland. (2023, September 25). Ochrona środowiska 2022. https://stat.gov.pl/obszary-tematyczne/srodowisko-energia/srodowisko/ochrona-srodowiska-2022,1,23.html (in Polish).
- Statistics Poland. (2024, January 6). Dynamika produkcji budowlano-montażowej w czerwcu 2023 roku. https://stat.gov.pl/obszary-tematyczne/przemysl-budownictwo-srodki-trwale/budownictwo/dynamika-produkcji-budowlano-montazowej-w-czerwcu-2023-roku,14,55.html (in Polish).
- Sybilski, D. (2009). Zastosowanie odpadów gumowych w budownictwie drogowym. Przegląd budowlany, 5, 37-44. https://www.przegladbudowlany.pl/2009/05/2009-05-pb-37-44_sybilski.pdf (in Polish).
- Szafranko, E., & Harasymiuk, J. (2022). Modelling of Decision Processes in Construction Activity. Sustainability, 14(7), 4277. https://doi.org/10.3390/su14074277
- Szczęsna, M., & Klimecka-Tatar, D. (2017). SWOT analysis in a cement factory. Archives of Engineering Knowledge, 2(2), 17-19. http://yadda.icm.edu.pl/baztech/element/bwmeta1.element.baztech-5cbb93db-b28a-417f-a2bd-75c7e98b4d10 (in Polish).
- Ulewicz, M. (2021). Gospodarka odpadami budowlanymi i rozbiórkowymi w europejskiej strategii zrównoważonego rozwoju – stan i perspektywa. Przegląd Budowlany, 10, 49-53. http://yadda.icm.edu.pl/baztech/element/bwmeta1.element.baztech-bb3e2718-f2e1-48d1-acac-709811a03d57 (in Polish).
- Ulewicz, M., & Liszewski, W. (2020). Influence of public financial support on the process of roof covering replacement and safety of civil structures. System Safety: Human - Technical Facility – Environment, 2(1), 259-267. https://doi.org/10.2478/czoto-2020-0032
- Ulewicz, M., & Pietrzak, A. (2021). Properties and Structure of Concretes Doped with Production Waste of Thermoplastic Elastomers from the Production of Car Floor Mats. Materials, 14(4), 872. https://doi.org/10.3390/ma14040872
- Ungureanu, D., Ța˘ranu, N., Hoha, D., Zghibarceaz, S., Isopescu, D. N., Boboc, V., Oprișan, G., Scutaru, M. C., Boboc, A., & Hudișteanu, I. (2020). Accelerated testing of a recycled road structure made with reclaimed asphalt pavement material. Construction and Building Materials, 262, 120658. https://doi.org/10.1016/j.conbuildmat.2020.120658
- Wagih, A. M., El-Karmoty, H. Z., Ebid, M., & Okba, S. H. (2013). Recycled construction and demolition concrete waste as aggregate for structural concrete. Housing and Building National Research Center, 9(3), 193-200. https://doi.org/10.1016/j.hbrcj.2013.08.007
- Wang, D., Lu, C., Zhu, Z., Zhang, Z., Liu, S., Ji, Y., & Xing, Z. (2023). Mechanical performance of recycled aggregate concrete in green civil engineering: Review. Case Studies in Construction Materials, 19, e02384. https://doi.org/10.1016/j.cscm.2023.e02384
- Wójcik, M. (2018). Możliwości recyklingu różnych frakcji odpadów w budownictwie drogowym. Autobusy: technika, eksploatacja, systemy transportowe, 219(5), 37-40. http://ojs.inw-spatium.pl/index.php/Autobusy/article/view/92 (in Polish).
- Wowkonowicz, P., Bojanowicz-Bablok, A., & Gworek, B. (2018). Wykorzystanie odpadów z przemysłu wydobywczego i hutnictwa w drogownictwie. Annual Set The Environment Protection, 20, 1335-1349. http://yadda.icm.edu.pl/baztech/element/bwmeta1.element.baztech-1a4eb1d4-7d02-46f6-8cf0-be22634f0f08 (in Polish).
- Xiao, F., Xu, L., Zhao, Z., & Hou, X. (2023). Recent applications and developments of reclaimed asphalt pavement in China, 2010–2021. Sustainable Materials and Technologies, 37, e00697. https://doi.org/10.1016/j.susmat.2023.e00697
- You, L., Long, Z., You, Z., Ge, D., Yang, X., Xu, F., Hashemi, M., & Diab, A. (2022). Review of recycling waste plastics in asphalt paving materials. Journal of Traffic and Transportation Engineering (English Edition), 9(5), 742-764. https://doi.org/10.1016/j.jtte.2022.07.002
- Yuan, S., Li, K., Luo, J., Zhu, Z., Zeng, Y., Dong, J., Liang, W., & Zhang, F. (2023). Effects of brick-concrete aggregates on the mechanical properties of basalt fiber reinforced recycled waste concrete. Journal of Building Engineering, 80, 108023. https://doi.org/10.1016/j.jobe.2023.108023
- Zając, B., & Gołębiowska, I. (2014). Zagospodarowanie odpadów budowlanych. Inżynieria i Aparatura Chemiczna, 6, 393-395. http://yadda.icm.edu.pl/baztech/element/bwmeta1.element.baztech-35678b3c-89d9-40ca-b8c4-9ffa561ed09c (in Polish).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-811faf01-f606-4621-b0d4-7380c381547c
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.