PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Strength and durability characteristics of concretes with crushed side window glass as partial aggregate substitution

Identyfikatory
Warianty tytułu
PL
Charakterystyki wytrzymałościowe betonów z tłuczoną samochodową szybą boczną zastosowaną jako częściowy zamiennik kruszywa
Języki publikacji
EN
Abstrakty
EN
Taking into account the numerous previous attempts to use waste glass for concrete production, an approach was proposed based solely on car side window glass waste. Only side window waste emerging during the production of car side windows was used during the research program. In this way, all key properties of the waste glass were under control (purity, granulometric properties, etc.). Two types of concretes with crushed side window glass, playing the role of coarse aggregate, were created. Concretes were differentiated by the amount of added crushed side window glass, which replaced 10-50% of the natural aggregate. Created concretes were thoroughly tested in the state of both a fresh mix and hardened composite. Consistency and air content of fresh mixes were tested. Slump was ranging from 15 mm to 20 mm and air content was ranging from 2.5% to 3.1%. Hardened composites were used to test apparent density, compressive strength, water absorption, water-tightness and resistance to freeze-thaw cycles. It was proven that concrete with side window glass as partial aggregate substitution is characterized by satisfactory mechanical properties (compressive strength after 28 days of curing was ranging from 51.9 MPa to 54.7 MPa), enabling its application as ordinary structural concrete. Properties of both fresh concrete mixes and hardened concretes based on crushed side window glass are similar to a reference concrete. It was proved that it is possible to replace up to 50% of natural coarse aggregate by crushed side window glass. Possible applications of the concretes in question were proposed. Experience gained during the research program is likely to be useful for tests of using crushed side window glass sourced from decommissioned cars and trucks. Areas where future research is needed are indicated.
PL
Biorąc pod uwagę liczne dotychczasowe próby wykorzystania szkła odpadowego do produkcji betonu, zaproponowano podejście oparte wyłącznie na odpadach otrzymywanych z szyb samochodowych. W programie badawczym wykorzystano wyłącznie odpady pochodzące z szyb bocznych powstające podczas utylizacji samochodów. W ten sposób wszystkie kluczowe właściwości szkła odpadowego były pod kontrolą (czystość, właściwości granulometryczne, itp.). Powstały dwa rodzaje betonów z tłuczoną szybą samochodową, pełniącą rolę grubego kruszywa. Betony różnicowano ilością dodanego kruszonego szkła, które zastępowało 10-50% kruszywa naturalnego. Powstałe betony zostały przebadane zarówno na etapie świeżej mieszanki betonowej, jak też związanego już betonu. Zbadano konsystencję i zawartość powietrza w świeżych mieszankach. Opad wahał się od 15 mm do 20 mm, a zawartość powietrza wahała się od 2,5% do 3,1%. Betony związane zastosowano do badania gęstości pozornej, wytrzymałości na ściskanie, nasiąkliwości, wodoszczelności i odporności na cykle zamrażania-rozmrażania. Wykazano, że beton z częściowym zastąpieniem kruszywa potłuczonymi bocznymi szybami samochodowymi charakteryzuje się zadawalającymi właściwościami mechanicznymi (wytrzymałość na ściskanie po 28 dniach wiązania wahała się od 51,9 MPa do 54,7 MPa), umożliwiającymi zastosowanie go jako zwykłego betonu konstrukcyjnego. Zarówno mieszanki betonowe, jak również betony, powstające na bazie bocznych szyb samochodowych mają właściwości zbliżone do betonu referencyjnego. Wykazano, że możliwe jest zastąpienie do 50% naturalnego kruszywa gruboziarnistego kruszonym szkłem pochodzącym z bocznych szyb samochodowych. Zaproponowano możliwe zastosowania omawianych betonów. Doświadczenia zdobyte podczas realizacji programu badawczego mogą być przydatne do testów dotyczących wykorzystania tłuczonych szyb bocznych pochodzących z wycofanych z eksploatacji samochodów osobowych i ciężarowych. Wskazano również obszary, w których potrzebne są dalsze badania.
Twórcy
  • Częstochowa University of Technology, Faculty of Civil Engineering, Częstochowa, Poland
autor
  • University of Warmia and Mazury in Olsztyn, Faculty of Geoengineering, Olsztyn, Poland
autor
  • Częstochowa University of Technology, Faculty of Civil Engineering, Częstochowa, Poland
  • Częstochowa University of Technology, Faculty of Civil Engineering, Częstochowa, Poland
  • Częstochowa University of Technology, Faculty of Civil Engineering, Częstochowa, Poland
Bibliografia
  • [1] P.K. Mehta, “Global concrete industry sustainability”, ACI Concrete International, vol. 31, no. 2, pp. 45-48, 2009.
  • [2] V. Penttala, “Concrete and sustainable development”, ACI Materials Journal, vol. 94, no. 5, pp. 409-416, 1997, DOI: 10.14359/325.
  • [3] J. Gołaszewski, T. Ponikiewski, A. Kostrzanowska-Siedlarz, and P. Miera, “The influence of calcareous fly ash on the effectiveness of plasticizers and superplasticizers”, Materials, vol. 13, no. 10, art. no. 2245, 2020, DOI: 10.3390/ma13102245.
  • [4] J. Pizoń, J. Gołaszewski, M. Alwaeli, and P. Szwan, “Properties of concrete with recycled concrete aggregate containing metallurgical sludge waste”, Materials, vol. 13, no. 6, art. no. 1448, 2020, DOI: 10.3390/ma13061448.
  • [5] M. Ghalehnovi, N. Roshan, A. Taghizadeh, E.A. Shamsabadi, S.A. Hadigheh, and J. de Brito, “Production of environmentally friendly concrete incorporating bauxite residue and silica fume”, Journal of Materials in Civil Engineering, vol. 34, no. 2, art. no. 04021423, 2022, DOI: 10.1061/(ASCE)MT.1943-5533.0004060.
  • [6] L. Evangelista and J. de Brito, “Durability performance of concrete made with fine recycled concrete aggregates”, Cement & Concrete Composites, vol. 32, no. 1, pp. 9-14, 2010, DOI: 10.1016/j.cemconcomp.2009.09.005.
  • [7] S. Seitl, P. Miarka, H. Šimonová, P. Frantík, Z. Keršner, J. Domski, and J. Katzer, “Change of fatigue and mechanical fracture properties of a cement composite due to partial replacement of aggregate by red ceramic waste”, Periodica Polytechnica Civil Engineering, vol. 63, no. 1, pp. 152-159, 2019, DOI: 10.3311/PPci.12450.
  • [8] K. McNeil and T.H.K. Kang, “Recycled concrete aggregates: A review”, International Journal of Concrete Structures and Materials, vol. 7, pp. 61-69, 2013, DOI: 10.1007/s40069-013-0032-5.
  • [9] M. Pająk, M. Krystek, M. Zakrzewski, and J. Domski, “Laboratory investigation and numerical modelling of concrete reinforced with recycled steel fibers”, Materials, vol. 14, no. 8, art. no. 1828, 2021, DOI: 10.3390/ma14081828.
  • [10] J. Thorneycroft, J. Orr, P. Savoikar, and R.J. Ball, “Performance of structural concrete with recycled plastic waste as a partial replacement for sand”, Construction and Building Materials, vol. 161, pp. 63-69, 2018, DOI: 10.1016/j.conbuildmat.2017.11.127.
  • [11] E.I. Arslan, S. Aslan, U. Ipek, S. Altun, and S. Yazıcıoglu, “Physico-chemical treatment of marble processing wastewater and the recycling of its sludge”, Waste Management & Research, vol. 23, no. 6, pp. 550-559, 2005, DOI: 10.1177/0734242X05059668.
  • [12] H.Y. Aruntas, M. Guru, M. Dayi, and I. Tekin, “Utilization of waste marble dust as an additive in cement production”, Materials and Design, vol. 31, no. 8, pp. 4039-4042, 2010, DOI: 10.1016/j.matdes.2010.03.036.
  • [13] J. Halbiniak, J. Katzer, M. Major, and I. Major, “A Proposition of an in situ production of a blended cement”, Materials, vol. 13, no. 10, art. no. 2289, 2020, DOI: 10.3390/ma13102289.
  • [14] M. Nehdi, J. Duquette, and A.E. Damaty, “Performance of rice husk ash produced using a new technology as a mineral admixture in concrete”, Cement and Concrete Research, vol. 33, pp. 1203-1210, 2003, DOI: 10.1016/S0008-8846(03)00038-3.
  • [15] K.M.A. Hossain, “Blended cement using volcanic ash and pumice”, Cement and Concrete Research, 2003, vol. 33, no. 10, pp. 1601-1605, 2003, DOI: 10.1016/S0008-8846(03)00127-3.
  • [16] J. Halbiniak and M. Major, “The use of waste glass for cement production”, IOP Conf. Series: Materials Science and Engineering, vol. 585, art. no. 012008, 2019, DOI: 10.1088/1757-899X/585/1/012008.
  • [17] R.Kubiliute, R. Kaminskas, and A. Kazlauskaite, “Mineral wool production waste as an additive for Portland cement”, Cement and Concrete Composites, vol. 88, pp. 130-138, 2018, DOI: 10.1016/j.cemconcomp.2018.02.003.
  • [18] F. Soltanzadeh, M. Emam-Jomeh, A. Edalat-Behbahani, and Z. Soltan-Zadeh, “Development and characterization of blended cements containing seashell powder”, Construction and Building Materials, vol. 161, pp. 292-304, 2018, DOI: 10.1016/j.conbuildmat.2017.11.111.
  • [19] C. Shi and K. Zheng, “A review on the use of waste glasses in the production of cement concrete”, Resources Conversation and Recycling, vol. 52, no. 2, pp. 234-247, 2007, DOI: 10.1016/j.resconrec.2007.01.013.
  • [20] N.N. Anisah, M. Awang, and K. Kartini, “Effect of using windscreen glass waste powder (WGWP) as cement replacement on the mechanical properties of mortar”, Journal of Physics: Conference Series, vol. 1532, art. no. 012011, DOI: 10.1088/1742-6596/1532/1/012011.
  • [21] G.M. Sadiqul Islam, M.H. Rahman, and N. Kazi, “Waste glass powder as partial replacement of cement for sustainable concrete practice”, International Journal of Sustainable Built Environment, vol. 6, no. 1, pp. 37-44, 2017, DOI: 10.1016/j.ijsbe.2016.10.005.
  • [22] H. Elaqra, M. A. A. Haloub, and R. Rustom, “Effect of new mixing method of glass powder as cement replacement on mechanical behavior of concrete”, Construction and Building Materials, vol. 203, no. 35, pp. 75-82, 2019, DOI: 10.1016/j.conbuildmat.2019.01.077.
  • [23] Z. Kalakada, J.H. Doh, and S. Chowdhury, “Glass powder as replacement of cement for concrete - an investigative study”, European Journal of Environmental and Civil Engineering, vol. 26, no. 3, pp. 1046-1063, 2022, DOI: 10.1080/19648189.2019.1695149.
  • [24] PN-88/B-06250:1988 Beton zwykły (Ordinary concrete).
  • [25] J. Katzer and J. Kobaka, “The assessment of fine aggregate pit deposits for concrete production”, Kuwait Journal of Science and Engineering, vol. 33, no. 2, pp. 165-174, 2006.
  • [26] J. Katzer and J. Kobaka, “Influence of fine aggregate grading on properties of cement composite”, Silicates Industriels, vol. 74, no. 01-02, 2009.
  • [27] PN-EN 933-1:2012 Tests for geometrical properties of aggregates - Part 1: Determination of particle size distribution - Sieving method.
  • [28] J. Katzer, “Median diameter as a grading characteristic for fine aggregate cement composite designing”, Construction and Building Materials, vol. 35, pp. 884-887, 2012, DOI: 10.1016/j.conbuildmat.2012.04.050.
  • [29] PN-EN 206+A1:2016-12 with national supplement PN-B-06265:2018-10 Concrete. Requirements, properties, production and compliance.
  • [30] PN-EN 1097-2:2020-09 Tests for mechanical and physical properties of aggregates - Part 2: Methods for the determination of resistance to fragmentation.
  • [31] PN-EN 12620+A1:2010 Aggregates for concrete.
  • [32] J. Katzer, J. Halbiniak, B. Langier, M. Major, and I. Major, “Influence of varied waste ceramic fillers on the resistance of concrete to freeze-thaw cycles”, Materials, vol. 14, no. 3, 2021, DOI: 10.3390/ma14030624.
  • [33] PN-EN 934-2+A1:2012 Admixtures for concrete, mortar and grout - Part 2: Concrete admixtures - Definitions, requirements, conformity, marking and labelling.
  • [34] PN-EN 12350-2:2019-07 Testing fresh concrete - Part 2: Slump test.
  • [35] PN-EN 12350-7:2019-08 Testing fresh concrete - Part 7: Air content - Pressure methods.
  • [36] PN-EN 12390-7:2019-08 Testing hardened concrete - Part 7: Density of hardened concrete.
  • [37] PN-EN 12390-3:2019-07 Testing hardened concrete - Part 3: Compressive strength of test specimens.
  • [38] PN-EN 12390-8:2019-08 Testing hardened concrete - Part 8: Depth of penetration of water under pressure.
  • [39] PN-EN 480-11:2008 Admixtures for concrete, mortar and grout - Test methods - Part 11: Determination of air void characteristics in hardened concrete.
  • [40] G. Prokopski, A. Huts, and V. Marchuk, “The use of granite dust as an effective filler of concrete mixtures”, Archives of Civil Engineering, vol. 67, no. 4, pp. 159-174, 2021, DOI: 10.24425/ace.2021.138492.
  • [41] T.Rudnicki and R. Jurczak, “The impact of the addition of diabase dusts on the properties of cement pavement concrete”, Archives of Civil Engineering, vol. 68, no. 1, pp. 395-411, 2022, DOI: 10.24425/ace.2022.140175.
  • [42] M. Kepniak and P. Woyciechowski, “Influence of sand substitution with waste lime powder on the concrete carbonation”, Archives of Civil Engineering, vol. 67, no. 4, pp. 383-392, 2021, DOI: 10.24425/ace.2021.138506.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-80da31ed-4837-4e10-b5f8-3c8905002e18
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.