Tytuł artykułu
Treść / Zawartość
Pełne teksty:
Identyfikatory
Warianty tytułu
Języki publikacji
Abstrakty
An adsorber in which sorption processes occur is one of the key components of an adsorption chiller. Precise real-time monitoring of and supervision over these processes are particularly important to ensure their proper execution. The article describes the experimental stand used for the measurement of the adsorber’s operating parameters and analyses pressure measurement uncertainties, taking into account the impact of the temperature on the test system filled with the adsorbent in the form of silica gel, while concurrently considering the influence of other factors (e.g. the environment, the A/A, and A/D conversion, or data processing) on measurement uncertainties. A complex analysis of uncertainties was carried out, including the results of the statistical analysis of the measurement data obtained from long-term experimental tests of the object and the uncertainties of the pressure measuring chain by the type B method, involving the consideration of interactions between the system components and the temperature impact on the propagation of uncertainties. As part of the analysis, the characteristic stages of the data collection and processing operations related to the sampling rate and measurement intervals were separated. The article presents the prototype test stand and original pressure measurement system for the verification of a single-bed adsorber working below 10 hPa.The novel construction of a single-bed adsorber was used as a test object. Furthermore, in this paper, the developed algorithm of the research method implemented in the system was discussed and positively verified.
Słowa kluczowe
Czasopismo
Rocznik
Tom
Strony
93--108
Opis fizyczny
Bibliogr. 37 poz., rys., tab., wykr., wzory
Twórcy
autor
- Łukasiewicz Research Network - Institute for Sustainable Technologies, K. Pułaskiego 6/10, 26-600 Radom, Poland
autor
- Kazimierz Pulaski University of Technology and Humanities, Stasieckiego 54, 26-600 Radom, Poland
Bibliografia
- [1] Ramji, H. R., Leo, S. L., Tan, I. A. W., & Abdullah, M. O. (2014). Comparative study of three different adsorbent-adsorbate working pairs for a waste heat driven adsorption air conditioning system based on simulation. IJRRAS, 18(2), 109-121.
- [2] Tamainot-Telto, Z., Metcalf, S. J., & Critoph, R. E. (2009). Novel compact sorption generators for car air conditioning. International Journal of Refrigeration, 32(4), 727-733. https://doi.org/10.1016/j.ijrefrig.2008.11.010
- [3] Sur, A., & Das, R. K. (2017). Experimental investigation on waste heat driven activated carbon-methanol adsorption cooling system. Journal of the Brazilian Society of Mechanical Sciences and Engineering, 39, 2735-2746. https://doi.org/10.1007/s40430-017-0792-y
- [4] Pons, M., & Cuilleminot, J. J. (1986). Design of an experimental solar-powered, solid-adsorption ice maker. Journal of Solar Energy Engineering, 108(4), 332-337. https://doi.org/10.1115/1.3268115
- [5] Szyc, M., & Nowak, W. (2014). Operation of an adsorption chiller in different cycle time conditions. Chemical and Process Engineering, 35(1), 109-119. https://doi.org/10.2478/cpe-2014-0008
- [6] Sur, A., Das, R. K., & Sah, R. P. (2018). Influence of initial bed temperature on bed performance of an adsorption refrigeration system. Thermal Science, 22(6A), 2583-2595. https://doi.org/10.2298/TSCI160108254S
- [7] Mohammed, R. H., Mesalhy, O., Elsayed, M. L., Su, M., & Chow, L. C. (2018). Revisiting the adsorption equilibrium equations of silica-gel/water for adsorption cooling applications. International Journal of Refrigeration, 86, 40-47. https://doi.org/10.1016/j.ijrefrig.2017.10.038
- [8] Kaushik, S. C. & Mahesh, A. (2013, April 16-20). Solar adsorption cooling system: sonic materials and collectors aspects. SOLAR 2013 Conference Including Proceedings of 42nd ASES Annual Conference Proceedings of 38th National Passive Solar Conference. North America.
- [9] Sah, R. P., Choudhury, B., Das, R. K., & Sur, A. (2017). An overview of modelling techniques employed for performance simulation of low-grade heat operated adsorption cooling systems. Renewable and Sustainable Energy Reviews, 74, 364-376. https://dx.doi.org/10.1016/j.rser.2017.02.062
- [10] Bahrehmand, H., & Bahrami, M. (2019). An analytical design tool for sorber bed heat exchangers of sorption cooling systems. International Journal of Refrigeration, 100, 368-379. https://doi.org/10.1016/j.ijrefrig.2019.02.003
- [11] Sharafian, A., Mehr, S. M. N., Thimmaiah, P. C, Huttema, W. & Bahrami, M. (2016). Effects of adsorbent mass and number of adsorber beds on the performance of a waste heat-driven adsorption cooling system for vehicle air conditioning applications. Energy, 112, 481-493. http://dx.doi.org/10.1016/j.energy.2016.06.099
- [12] Chen, W. D., & Chua, K. J. (2020). Parameter analysis and energy optimization of a four-bed, two-evaporator adsorption system. Applied Energy, 265(114842), 1-16. https://doi.org/10.1016/j.apenergy.2020.114842
- [13] Moffat, R. J. (1988). Describing the uncertainties in experimental results. Experimental Thermal and Fluid Science, 1(1), 3-17. https://doi.org/10.1016/0894-1777(88)90043-X
- [14] Adamczak, S., Bochnia, J., & Kaczmarska, B. (2015). An analysis of tensile test results to assess the innovation risk for an additive manufacturing technology. Metrology and Measurement Systems, 22(1), 127-138. https://doi.org/10.1515/mms-2015-0015
- [15] Pan, Q., Peng, J., & Wang, R. (2019). Experimental study of an adsorption chiller for extra low temperature waste heat utilization. Applied Thermal Engineering, 163 (114341), 1-8. https://doi.org/10.1016/j.applthermaleng.2019.114341
- [16] Chludziński, T., & Kwiatkowski, A. (2020). Exhaled breath analysis by resistive gas sensors. Metrology and Measurement Systems, 27(1), 81-89. https://doi.org/10.24425/mms.2020.131718
- [17] Endress+Hauser. (2017). Cerabar PMC11, PMC21, PMP11, PMP21 Process pressure measurement [Technical information TI01133P/00/EN/05.17 71353705]. https://portal.endress.com/wa001/dla/5001041/2232/000/04/TI01133PEN_0517.pdf
- [18] Schneider Electric. (2018). Modicon TM5 Analog I/O Modules Hardware Guide. [Technical information 03/2018, EIO0000000450.04]. https://download.schneider-electric.com/files?p_enDocType=User+guide&p_File_Name=ElO0000000450.06.pdf&p_Doc_Ref=EIO0000000450
- [19] National Semiconductor Corporation. (2000). LM35 Precision Centigrade Temperature Sensors. (Datasheet DS005516]. https://www.digchip.com/datasheets/download_datasheet.php?id=513966&part-number=LM35DZ
- [20] Joint Committee for Guides in Metrology. (2008). Evaluation of measurement data - Guide to the expression of uncertainty in measurement (JCGM 100:2008). http://www.bipm.org/utils/common/documents/jcgm/JCGM_100_2008_E.pdf
- [21] Domanska, A. (2011). Uncertainty of the Analog to Digital Conversion Result. Measurement Uncertainty, Theory and Practice, Fotowicz, P., (Ed.), GUM, 22-31. (in Polish)
- [22] Neska, M., & Majcher, A. (2014). Estimation of the uncertainty of measurement in a two-channel system for tests on the intensity of infrared radiation. Problemy Eksploatacji - Maintenance Problems, 3, 45-55.
- [23] Jermak, C. J., Jakubowicz, M., Derezynski, J. & Rucki, M. (2017). Uncertainty of the Air Gauge Test Rig. International Journal of Precision Engineering And Manufacturing. 18(4), 479-485. https://doi.org/10.1007/s12541-017-0058-8
- [24] Neska, M., & Majcher, A. (2015). System for automatic web guiding tor roll-to-roll machine working in a start-stop mode. Solid State Phenomena, 223, 374-382. https://doi.org/10.4028/www.scientitic.net/SSP.223.374
- [25] EA European Accreditation. (2021). Evaluation of the Uncertainty of Measurement in Calibration. European Co-operation for Accreditation (Publication References EA-4/02 M:2021). https://european-accreditation.org/wp-content/upIoads/2018/10/EA-4-02.pdf
- [26] Nuccio, S., & Spataro, C. (2008, Sep. 22-24). Figures of Merit tor Analog-to-Digital Converters: The Optimal Set for the Uncertainty Evaluation. 13th Workshop on ADC Modelling and Testing. Italy.
- [27] Dzwonkowski, A., & Swędrowski, L. (2012). Uncertainty analysis of measuring system for instantaneous power research. Metrology and Measurement Systems, 19(3), 573-582. https://doi.org/10.2478/v10178-012-0050-7
- [28] Bullock, R., & Deckro, R. (2006). Foundations for system measurement. Measurement, 39(8), 701-709. https://doi.org/10.1016/j.measurement.2006.03.009
- [29] Jermak, C. J., Jakubowicz, M., Dereżyński, J., & Rucki, M. (2016). Air Gauge Characteristics Linearity Improvement. Journal of Control Science and Engineering, 8701238, 1-7. https://doi.org/10.1155/2016/8701238
- [30] Jermak, C. J., & Rucki, M. (2016). Static characteristics of air gauges applied in the roundness assessment. Metrology and Measurement Systems, 23(1), 85-96. https://doi.org/10.1515/mms-2016-0009
- [31] Sałaciński, T. (2012). Analysis of tools and measurement systems capabilities. Inżynieria Maszyn. 2(17), 74-83. (in Polish)
- [32] Rucki, M., Barisic, B., & Szalay, T. (2008). Analysis of air gage inaccuracy caused by flow instability. Measurement, 41(6), 655-661. https://doi.org/10.1016/j.measurement.2007.10.001
- [33] Dietrich, E., & Schulze, A. (2010). Statistical Procedures for Machine and Process Qualification. Hanser Fachbuchverlag.
- [34] Sałaciński, T. (2015). SPC - Statistical Process Control. The Warsaw University of Technology Publishing House.
- [35] Neska, M., Majcher, A., & Przybylski, J. (2013). Control software (or a reconfigurable control system for a set of testing devices. Problemy Eksploatacji - Maintenance Problems, (2), 57-68.
- [36] Neska, M. (2015). Measurement system for IR absorption. Problemy Eksploatacji - Maintenance Problems, (1), 91-100.
- [37] Cheng, H. M., Huang, Q. F., Ji, F., Xu, Q., Liu, J., & Tian, Z. Q. (2018). System for calibrating analogue merging units in absence of synchronization signals. Metrology and Measurement Systems, 25(1), 129-138. https://doi.org/10.24425/118169
Uwagi
Opracowanie rekordu ze środków MEiN, umowa nr SONP/SP/546092/2022 w ramach programu "Społeczna odpowiedzialność nauki" - moduł: Popularyzacja nauki i promocja sportu (2022-2023).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-809dfcb3-36f3-48a6-8609-26c232364a61