Tytuł artykułu
Treść / Zawartość
Pełne teksty:
Identyfikatory
Warianty tytułu
Języki publikacji
Abstrakty
Water quality modeling has become a recurring request from drinking water network managers, due to regulatory changes but also to contribute to all users’ satisfaction with the taste of the water. The objective of this research project is to provide network managers, both for the understanding of the phenomena studied and for the technical valuation of the approaches considered, with a new methodology to develop a predicting method for free residual chlorine concentrations using an accurate hydraulic model. The development of the chlorines model needed knowledge of the network’s hydraulic behavior. The model established can be used in a proactive and daily mode of operation. It is helpful to show the quality of drinking water, particularly chlorine concentration, during peak demand and the lowest demand times before it is found in the distribution network’s district hydraulic part. Based on the results of this simulation, we have identified a low content of free chlorine in the cast iron pipes due to the high consumption of chlorine by the ferrous ions (Fe2+), which generates a significant vulnerability among consumers. The outcomes demonstrated that utility managers may more easily optimize residual chlorine in sizable water distribution networks using the suggested approach.
Słowa kluczowe
Wydawca
Rocznik
Tom
Strony
269--278
Opis fizyczny
Bibliogr. 19 poz., rys., tab.
Twórcy
autor
- Environmental, Ecological and Agro-Industrial Engineering Laboratory, Faculty of Sciences and Techniques of Beni-Mellal, Sultan Moulay Slimane University, 23000, Beni-Mellal, Morocco
autor
- Laboratory of Process and Environment Engineering, Faculty of Sciences and Techniques of Mohammedia, Hassan II University, B.P. 146, Mohammedia, Morocco
autor
- Environmental, Ecological and Agro-Industrial Engineering Laboratory, Faculty of Sciences and Techniques of Beni-Mellal, Sultan Moulay Slimane University, 23000, Beni-Mellal, Morocco
Bibliografia
- 1. Ababu, T.T., Tesfamariam, Y.D., Gabriel, C.B. and Stanley, J.N. 2019. A Mathematical Model for Variable Chlorine Decay Rates in Water Distribution Systems. Modelling and simulation in engineering. https://doi.org/10.1155/2019/5863905
- 2. Clark, R.M., Haught, R.C. 2005. Characterizing pipe wall demand: Implications for water quality modeling. Journal of water resources planning and management, 131(3), 208-217.
- 3. Clark, R.M, Rossman, L.A. 1995. Modeling distribution system water quality: Regulatory implications. Journal of water resources planning and management, 121(6), 423-428.
- 4. Hall, J., Zaffiro, A., Marx, R., Kefauver, P., Krishnan, E., Haught, R. and Herrmann, J. 2009. Online water quality parameters as indicators of distribution system contamination. Journal-American Water Works Association, 99(1), 66-77. https://doi.org/10.1002/j.1551-8833.2007.tb07847.x
- 5. Hallam, N.B., West, J.R., Forster, C.F., Powell, J.C. and Spencer, I. 2002. The decay of chlorine associated with the pipe wall in water distribution systems. Water Research, 36(14), 3479-3488. https://doi.org/10.1016/S0043-1354(02)00056-8
- 6. Lehtola, M.J., Miettinen, I.T., Hirvonen, A., Vartiainen, T. and Martikainen, P.J. 2006. Resuspension of biofilms and sediments to water from pipelines as a result of pressure shocks in drinking water distribution system. IWA Biofilm Systems IV. IWAInternational Water Association, Amsterdam.
- 7. Mays, L.W. Water Distribution System Hand Book. 2011. McGraw Hill, New York.
- 8. Monteiroa, L.b., Figueiredoa, D.b., Diasc, S. Freitasc, R. Covasb, D. Menaiaa, J. and Coelhoa, S.T. 2014. Modeling of chlorine decay in drinking water supply systems using EPANET MSX, 12th International Conference on Computing and Control for the Water Industry. Procedia Engineering. 70, 1192-1200.
- 9. Ohara, Z., Ostfelda, A., Lahava, O. and Birnhacka, L. 2015. Modelling heavy metal contamination events in water distribution systems. Procedia Eng. 119, 328-336. https://doi.org/10.1016/j.proeng.2015.08.892
- 10. Philip, M.R., Jonkergouw, S.T.K., Dragan, A.S., Dan, Z., Xiu, Q.H. and Hong, B.Z. 2008. A variable rate coefficient chlorine decay model. Environ. Sci. Technol. 43(2), 408-414. https://doi.org/10.1021/es8012497
- 11. Powell J.C., Hallam N.B., West J.R., Forster C.F., Simms J. 2000. Factors which control bulk chlorine decay rates. Water Research, 34(1), 117-126. https://doi.org/10.1016/S0043-1354(99)00097-4
- 12. Rossman, L.A. 2000. EPANET 2 User’s Manual, US Environmental Protection Agency. Water Supply and Water Resources Division, National Risk Management Research Laboratory, Cincinnati, OH. 45268.
- 13. Seyoum, A.G., Tanyimboh, T.T. 2014. Pressuredependent network water quality modelling. In: Proceedings of the Institution of Civil Engineers-Water Management, 167(6), 342-355. Thomas Telford Ltd. https://doi:10.1680/warma.12.00118.
- 14. Mohamed, H.I., Abozeid, G. 2011. Dynamic simulation of pressure head and chlorine concentration in the City of Asyut water supply network in abnormal operating conditions. Arabian Journal for Science and Engineering, 36(2), 173-184.
- 15. Tonev, R., Dimova, G. 2020. Investigation of chlorine wall decay in an old, decommissioned metallic pipe using a pipe section reactor. Water Supply, 20(3), 953-962. https://doi.org/10.2166/ws.2020.017.
- 16. Yang, Y.J., Haught, R.C. and Goodrich, J.A. 2009. Real-time contaminant detection and classification in a drinking water pipe using conventional water quality sensors: Techniques and experimental results. Journal of Environmental Management, 90(8), 2494-2506. https:// DOI: 10.1016/j.jenvman.2009.01.021.
- 17. Vasconcelos, J.J., Grayman, W.M., Kiene, L., Wable, O., Biswas, P., Bhari, A., Rossman L.A., Clark R.M. 1996. Characterization and modeling of chlorine decay in distributions systems. American Water Works Association Research Foundation (AWWARF), Denver, CO, USA.
- 18. Vincenzo, T., Athanasia, T., Ioannis, K. and Athanasios, K. 2018. Consumption of free chlorine in an aqueduct scheme with low protection: Case study of the New Aqueduct Simbrivio-Castelli, Italy. Water. 10(2), 127. https://doi.org/10.3390/w10020127
- 19. World Health Organization. 2011. Guidelines for Drinking-Water Quality, 4th ed., Geneva.
Uwagi
Opracowanie rekordu ze środków MEiN, umowa nr SONP/SP/546092/2022 w ramach programu "Społeczna odpowiedzialność nauki" - moduł: Popularyzacja nauki i promocja sportu (2022-2023).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-80762311-9b7b-4882-8274-5cbeb5c12ed4