PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Quantum-inspired particle swarm optimization algorithm with performance evaluation of fused images

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
In order to improve and accelerate the speed of image integration, an optimal and intelligent method for multi-focus image fusion is presented in this paper. Based on particle swarm optimization and quantum theory, quantum particle swarm optimization (QPSO) intelligent search strategy is introduced in salience analysis of a contrast visual masking system, combined with the segmentation technique. The superiority of QPSO is quantum parallelism. It has stronger search ability and quicker convergence speed. When compared with other classical or novel fusion methods, several metrics for image definition are exploited to evaluate the performance of all the adopted methods objectively. Experiments are performed on both artificial multi-focus images and digital camera multi-focus images. The results show that QPSO algorithm is more efficient than non-subsampled contourlet transform, genetic algorithm, binary particle swarm optimization, etc. The simulation results demonstrate that QPSO is a satisfying image fusion method with high accuracy and high speed.
Czasopismo
Rocznik
Strony
679--691
Opis fizyczny
Bibliogr. 12 poz.,rys., tab.
Twórcy
autor
  • MOE Key Lab for Intelligent Networks and Network Security, School of Electronics and Information Engineering, Xi’an Jiaotong University, Xi’an, 710049, China
autor
  • MOE Key Lab for Intelligent Networks and Network Security, School of Electronics and Information Engineering, Xi’an Jiaotong University, Xi’an, 710049, China
autor
  • MOE Key Lab for Intelligent Networks and Network Security, School of Electronics and Information Engineering, Xi’an Jiaotong University, Xi’an, 710049, China
autor
  • Huawei Central Research Academy, Beijing, 100095, China
autor
  • Huawei Central Research Academy, Beijing, 100095, China
autor
  • Huawei Central Research Academy, Beijing, 100095, China
Bibliografia
  • [1] SHUTAO LI, BIN YANG, Multifocus image fusion using region segmentation and spatial frequency, Image and Vision Computing 26(7), 2008, pp. 971–979.
  • [2] JING TIAN, LI CHEN, Adaptive multi-focus image fusion using a wavelet-based statistical sharpness measure, Signal Processing 92(9), 2012, pp. 2137–2146.
  • [3] SHUTAO LI, BIN YANG, JIANWEN HU, Performance comparison of different multi-resolution transforms for image fusion, Information Fusion 12(2), 2011, pp. 74–84.
  • [4] ZHAOBIN WANG, YIDE MA, JASON GU, Multi-focus image fusion using PCNN, Pattern Recognition 43(6), 2010, pp. 2003–2016.
  • [5] XIAO-BO QU, JING-WEN YAN, HONG-ZHI XIAO, ZI-QIAN ZHU, Image fusion algorithm based on spatial frequency-motivated pulse coupled neural networks in nonsubsampled contourlet transform domain, Acta Automatica Sinica 34(12), 2008, pp. 1508–1514.
  • [6] XINMAN ZHANG, LUBING SUN, JIUQIANG HAN, GANG CHEN, An application of swarm intelligence binary particle swarm optimization (BPSO) algorithm to multi-focus image fusion, Optica Applicata 40(4), 2010, pp. 949–964.
  • [7] XINMAN ZHANG, JIUQIANG HAN, PEIFEI LIU, Restoration and fusion optimization scheme of multifocus image using genetic search strategies, Optica Applicata 35(4), 2005, pp. 927–942.
  • [8] YUJIE CAI, JUN SUN, JIE WANG, YANRUI DING, NA TIAN, XIANGRU LIAO, WENBO XU, Optimizing the codon usage of synthetic gene with QPSO algorithm, Journal of Theoretical Biology 254(1), 2008, pp. 123–127.
  • [9] KE MENG, HONG GANG WANG, ZHAOYANG DONG, KIT PO WONG, Quantum-inspired particle swarm optimization for valve-point economic load dispatch, IEEE Transactions on Power Systems 25(1), 2010, pp. 215–222.
  • [10] FANG LIU, HAIBIN DUAN, YIMIN DENG, A chaotic quantum-behaved particle swarm optimization based on lateral inhibition for image matching, Optik – International Journal for Light and Electron Optics 123(21), 2012, pp. 1955–1960.
  • [11] YI CHAI, HUAFENG LI, ZHAOFEI LI, Multifocus image fusion scheme using focused region detection and multiresolution, Optics Communications 284(19), 2011, pp. 4376–4389.
  • [12] WEI HUANG, ZHONGLIANG JING, Evaluation of focus measures in multi-focus image fusion, Pattern Recognition Letters 28(4), 2007, pp. 493–500.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-7f45a744-ae6d-4c55-a0f6-c2e3c71141b3
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.