PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Zinc and Magnesium vs COVID-19

Treść / Zawartość
Identyfikatory
Warianty tytułu
PL
Cynk i magnez a COVID-19
Języki publikacji
EN PL
Abstrakty
EN
Zinc and magnesium are among the most important elements for the human body. A deficiency or excess of either of them may pose a potential threat to the homeostatic mechanisms of the body. Both elements condition the proper functioning of the immune system. Zinc and magnesium deficiency significantly reduces the body's immunity, facilitating infection with various pathogens, including SARS-COV-2 infection. In this paper, we reviewed the literature on the impact of zinc and magnesium deficiencies on the incidence and course of COVID-19.
PL
Cynk i magnez to jedne z ważniejszych pierwiastków dla organizmu człowieka. Niedobór lub nadmiar któregoś z nich może stanowić potencjalne zagrożenie dla mechanizmów homeostazy ustroju. Pierwiastki te warunkują prawidłowe funkcjonowanie układu immunologicznego. Niedobór cynku i magnezu istotnie zmniejsza odporność organizmu ułatwiając infekcje różnymi patogenami, w tym zakażenia SARS-COV-2. W pracy dokonano przeglądu piśmiennictwa obejmującego zagadnienia wpływu niedoborów cynku i magnezu na zachorowanie i przebieg COVID-19.
Słowa kluczowe
Rocznik
Tom
Strony
45--52
Opis fizyczny
Bibliogr. 40 poz., tab.
Twórcy
  • John Paul II University of Applied Sciences in Biala Podlaska, Poland
  • John Paul II University of Applied Sciences in Biala Podlaska, Poland
  • Doctoral School, Medical University of Lublin, Poland
  • Department of Epidemiology and Public Health, Medical University, Łódź, Poland
  • Department of Hygiene and Epidemiology, Medical University of Lublin, Poland
Bibliografia
  • 1. Zhang E., He W., Du H., Yang K. (2008). Microstructure, mechanical properties and corrosion properties of Mg–Zn–Y alloys with low Zn content. Materials Science and Engineering A 488 (2008) 102–11. doi:10.1016/j.msea.2007.10.056;
  • 2. Human Vitamin and Mineral Requirements. Report of a joint FAO/WHO expert consultation Bangkok, Thailand. Food and Agriculture Organization of the United Nations. World Health Organization. Food and Nutrition Division FAO Rome.FAO 2001;
  • 3. Maier J. A., Pickerging G., Giacomoni E., Cazzaniga A., Pellegrino P. (2020). Headaches and Magnesium: Mechanisms, Bioavailability, Therapeutic Efficacy and Potential Advantage of Magnesium Pidolate. Nutriens,12(9):2660.doi: 10.3390/nu12092660;
  • 4. Trapani V. , Rosanoff A., Baniasadi S., Barbagallo M. , Castiglioni S., Guerrero-Romero F., Iotti S. , Mazur A., Micke O., Pourdowlat G., Scarpati G., Wolf F.I., Maier J.A. (2022).The relevance of magnesium homeostasis in COVID-19. European Journal of Nutrition, volume 61(2):625-636. doi: 10.1007/s00394-021-02704-y;
  • 5. Razzaque M.S. Magnesium: Are W e Consuming Enough? Nutrients. 2018; 10(12): 1863. doi: 10.3390/nu10121863;
  • 6. Medeiros de Morais C. (2021). Nutritional therapy in COVID-19 management. Kompass Nutr Diet. 1:10-12. doi:10.1159/000512853;
  • 7. Coman AE., Ceasovschih A., Petroaie D.A., Popa E. Lionte C., BologaC., HaligaR.E., Cosmescu A., Slănină A.M., Bacușcă A.I., Șorodoc V., Șorodoc L. (2023). The Significance of Low Magnesium Levels in COVID-19 Patients. Medicina, 59(2),279. doi: 10.3390/medicina59020279;
  • 8. Fan Y, Pedersen O. (2021). Gut microbiota in human metabolic health and disease. Nat Rev Microbiol 19:55–71. doi:10.1038/s41579-020-0433-9;
  • 9. Jarosz M., Rychlik E., Stoś K., Charzewska J. ( red.)(2020) Nutrition standards for the Polish population and their application. Warszawa: Narodowy Instytut Zdrowia Publicznego – Państwowy Zakład Higieny. ISBN:978-83-65870-28-5;
  • 10. Hu B., Guo H., Zhou P., Shi, ZL. (2021). Characteristics of SARS-CoV-2 and COVID-19. Nat. Rev. Microbiol.19, 141-154.doi:10.1038/s41579-020-00459-7;
  • 11. Ye Q, Wang B, Mao J., Fu J. , Shang S., Shu Q., Zhang T. Epidemiological analysis of COVID-19 and practical experience from China. J Med. Virol 2020; 92: 755-769;
  • 12. Harrison SL., Fazio-Eynullayeva E., Lane DA. Underhill P., Lip G.Y.H (2020). Comorbidities associated with mortality in 31,461 adults with COVID-19 in the United States: a federated electronic medical record analysis. PLoS Med,17:1003321. doi.10.1371/journal.pmed.1003321;
  • 13. Salinas Aguirre JE., Sánchez García C., Rodríguez Sanchez R., Rodríguez-Sanchez R., Rodríguez-Muñoz L., Díaz-Castaño A. , Bernal-Gómez R. (2021). Clinical characteristics and comorbidities associated with mortality in patients with COVID-19 in Coahuila (Mexico). Rev Clin Esp, 222(5): 288–292. doi: 10.1016/j.rceng.2020.12.007;
  • 14. Mikulec A., Zborowski M., Cisoń-Apanasewicz U., Stawiarska A., Kowalski S.(2022). Impact of the COVID-19 pandemic on the eating behaviour of children and adolescents. Food. Science. Technology. Quality, 29, 3 (132),42-55. doi:10.15193/zntj/2022/132/422;
  • 15. Galluccio A., Caparello G., Avolio E., Manes E., Ferraro S., Giordano C., Sisci D., Bonofiglio D. (2021). Self-perceived physical activity and adherence to the Mediterranean diet in healthy adolescents during COVID-19: findings from the DIMENU pilot study. Healthcare, 9(6), 622. doi: 10.3390/healthcare9060622;
  • 16. Khan M., Moverley-Smith JE.(2020). "Covibesity," a new pandemic. Obes. Med.19,100282. doi: 10.1016/j.obmed.2020.100282;
  • 17. Dunn C.G., Kenney E., Fleischhacker S.E., Bleich S.N.(2020). Feeding low-income children during the covid-19 pandemic. N. Engl. J. Med.382(18):e40. doi:10.1056/NEJMp2005638;
  • 18. Dunton G.F., Do B., Wang S.D. (2020). Early effects of the COVID-19 pandemic on physical activity and sedentary behavior in children living in the U.S. BMC Public Health. 4;20 (1): 1351.doi:10.1186/s12889-020-09429-3;
  • 19. Wolf FI., Maier JA., Rosanoff A., et al. (2021). The magnesium global network (MaGNet) to promote research on magnesium in diseases focusing on COVID-19. Magnes Res, 34:90–92. doi:10.1684/mrh.2021.0479;
  • 20. Alamdari N.M., Afaghi S., Rahimi F.S., Tarki F.E., Tavana S., Zali A., Fathi M., Besharat S., Bagheri L., Pourmotahari F., Irvani S.S.N., Dabbagh A, Mousavi S.A. Mortality Risk Factors among Hospitalized COVID-19 Patients in a Major Referral Center in Iran. Tohoku J Exp Med. 2020, 252(1), 73-84];
  • 21. Goshua G., Pine AB., Meizlish ML. et al. (2020). Endotheliopathy in COVID-19-associated coagulopathy: evidence from a single-centre, cross-sectional study. Lancet Haematol,7:575-582. doi: 10.1016/S2352-3026(20)30216-7;
  • 22. Perico L., Benigni A., Casiraghi F. et al. (2021). Immunity, endothelial injury and complement-induced coagulopathy in COVID-19. Nat Rev Nephrol,17:46–64. doi:10.1038/s41581-020-00357-4;
  • 23. Sheu JR., Hsiao G., Shen M-Y. et al. (2002). Mechanisms involved in the antiplatelet activity of magnesium in human platelets. Br J Haematol, 2002;119:1033-1041; doi:10.1046/j.1365-2141.2002.03967.x;
  • 24. Sarvazad H., Cahngaripour SH., Eskandari Roozbahani N., Izadi B. (2020). Evaluation of electrolyte status of sodium, potassium and magnesium and fasting blood sugar at the initial admission of individuals with COVID-19 without underlying disease in Golestan Hospital. Kermanshah New Microbes New Infect, 38:100807.doi:10.1016/j.nmni.2020.100807;
  • 25. Wallace TC. (2020). Combating COVID-19 and building immune resilience: a potential role for magnesium nutrition? J Am Coll Nutr, 39:685-693.doi:10.1080/07315724.2020.1785971;
  • 26. Pour OB., Yahyavi Y., Karimi A., Khamaneh AM., Milani M., Khalili M., Sharifi A. (2021). Serum trace elements levels and clinical outcomes among Iranian COVID-19 patients. Int J Infect Dis, 111:164-168. doi: 10.1016/j.ijid.2021.08.053;
  • 27. Wessels I., Rolles B., Rink L. (2020). The potential impact of zinc supplementation on COVID-19 pathogenesis. Front Immunol, 11:1712. doi:10.3389/fimmu.2020.01712;
  • 28. Wessels I., Rolles B., Slusarenko AJ., Rink L. (2022). Zinc deficiency as a possible risk factor for increased susceptibility and severe progression of Corona Virus Disease 19. Br J Nutr, 127(2):214-232. doi:10.1017/S0007114521000738;
  • 29. Hoang BX., Han B. (2020). A possible application of hinokitiol as a natural zinc ionophore and anti-infective agent for the prevention and treatment of COVID-19 and viral infections. Med Hypotheses,145:110333. doi:10.1016/j.mehy.2020.110333;
  • 30. Fan L.,Cui Y., Liu Z.,Guo J., Gong X.,Zhang Y., Tang W.,Zhao J., Xue Q. (2023). Zinc and selenium status in coronavirus disease 2019, BioMetals,19:53:45. doi:10.1007/s10534-023-00501-0;
  • 31. Derwand R., Scholz M., Zelenko V. (2020). COVID-19 outpatients: early risk-stratified treatment with zinc plus low-dose hydroxychloroquine and azithromycin: a retrospective case series study. Int J Antimicrob Agents, 56(6):106214. doi:10.1016/j.ijantimicag.2020.106214;
  • 32. Jothimani D., Venugopal R., Abedin MF., Kaliamoorthy I., Rela M. (2020). COVID-19 and the liver. Journal of Hepatology, vol. 73,1231–1240. doi:10.1016/j.jhep.2020.06.006;
  • 33. Im JH., Je YS., Baek J., Chung MH., Kwon HY., Lee JS. (2020). Nutritional status of patients with COVID-19. Int J Infect Dis, 100:390-393. doi:10.1016/j.ijid.2020.08.018;
  • 34. Talha KA., Patwary MI., Alam ZN., Ali SM., Ahmed S., Nafee A.,Selina F., Khan MH., Shusmita FR., Avi SG., Rahman MN. (2022). Case-Control Study to Evaluate Zinc Deficiency as a Risk Factor for Oxygen Requirement in Patients with COVID-19. Mymensingh Med J, 31(1):216-222. PMID: 34999705;
  • 35. Shang W., Dong J., Ren Y., Tian M., Li W., Hu J., Li Y. (2020). The value of clinical parameters in predicting the severity of COVID-19. J Med. Virol,92(10):2188–2192. doi:10.1002/jmv.26031;
  • 36. Patel O., Chinni V., El-Khoury J., Perera M., Neto AS., McDonald C., See E., Jones D., Bolton D., Bellomo R., Trubiano J., Ischia J. (2021). A pilot double-blind safety and feasibility randomized controlled trial of high-dose intravenous zinc in hospitalized COVID-19 patients. J Med Virol, 93(5):3261-3267.doi:10.1002/jmv.26895;
  • 37. Abd-Elsalam S., Soliman S., Esmail ES., Khalaf M., Mostafa EF., Medhat MA., Ahmed OA., El Ghafar MSA., Alboraie M., Hassany SM. (2021). Do zinc supplements enhance the clinical efficacy of hydroxychloroquine?: A randomized multicenter trial. Biol Trace Elem Res, 199(10):3642-3646. doi:10.1007/s12011-020-02512-1;
  • 38. Thomas S., Patel D., Bittel B., Wolski K., Wang Q., Kumar A., Il’Giovine ZJ., Mehra R., McWilliams C., Nissen SE., Desai MY. (2021). Effect of high-dose zinc and ascorbic acid supplementation vs usual care on symptom length and reduction among ambulatory patients with SARS-CoV-2 infection: the COVID A to Z randomized clinical trial. JAMA Netw Open, 4(2):210369. doi:10.1001/jamanetworkopen.2021.0369;
  • 39. Kiran Kumar PVSN, Tomo S., Purohit P., Sankanagoudar S.,et al. (2023). Comparative Analysis of Serum Zinc, Copper and Magnesium Level and Their Relations in Association with Severity and Mortality in SARS-CoV-2 Patients. Biological Trace Element Research, 201(1):23-30.doi: 10.1007/s12011-022-03124-7;
  • 40. Tsuchiya H. (2022). Gustatory and Saliva Secretory Dysfunctions in COVID-19 Patients with Zinc Deficiency. Life (Basel),12(3):353. doi: 10.3390/life12030353.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-7d507e42-446b-479c-8c97-be2941420edc
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.