Identyfikatory
Warianty tytułu
Języki publikacji
Abstrakty
The use of zinc is very common in many industries. The multitude of advantages, and capabilities make use of different forms of penetration of zinc into the environment. Due to its ability to migrate, zinc is also accumulated in living organisms. Zn is an essential trace element but both the deficiency or excess are extremely dangerous for living organisms. Nowadays nanozinc has been increasingly used. Nanozinc is a component of daily used products, like plastics, ceramics, glass, cement, rubber, foods and many others. This leads to spreading nanozinc the environment with the possibility of its penetration into living organisms. This article is a review of the impact of zinc and zinc nanoparticles on a variety of organisms: ranging from microorganisms through plants and animals, to people.
Czasopismo
Rocznik
Tom
Strony
93--102
Opis fizyczny
Bibliogr. 36 poz.
Twórcy
autor
- Institute of General Food Chemistry, Faculty of Biotechnology and Food Science, Lodz University of Technology, Stefanowskiego 4/10, 90-924 Lodz
autor
- Institute of General Food Chemistry, Faculty of Biotechnology and Food Science, Lodz University of Technology, Stefanowskiego 4/10, 90-924 Lodz
Bibliografia
- 1. Kabata-Pendias A, Pendias H. Biogeochemia Pierwiastków Śladowych. PWN, Warszawa, Poland, 1993, pp. 126-137,
- 2. Cabała J. Cynk w technosferze. Górnictwo i Geol 2010, 5(4):63-76.
- 3. Zhao L, Peralta-Videa JR, Ren M, Varela-Ramirez A, Li C, Hernandez-Viezcas JA, Aguiler, RJ, Gardea-Torresdey JL. Transport of Zn in a sandy loam soil treated with ZnO NPs and uptake by corn plants : Electron microprobe and confocal microscopy studies. Chem Eng J 2012, 184:1-8.
- 4. Ma H, Williams PL, Diamond SA. Ecotoxicity of manufactured ZnO nanoparticles - A review. Environ Pollut 2013, 172:76-85.
- 5. Wyszkowska J, Borowik A, Kucharski M, Kucharski J. Effect of cadmium, cooper and zinc on plants, soil microorganisms and soil enzymes. J Elem 2013, 769-796.
- 6. Węglarzy K. Metale ciężkie – źródła zanieczyszczeń i wpływ na środowisko. Wiadomości Zootech 2007, 3:31-38.
- 7. Kołacz R, Opaliński S, Dobrzański Z, Kupczyński R, Cwynar P,Durkalec M, Czaban S. Zawartość miedzi i cynku w środowisku, w rejonie oddziaływania obiektu unieszkodliwiania odpadów wydobywczych „Żelazny Most”. Przem Chem 2014, 93/8:1451-1454.
- 8. Piontek M, Fedyczak Z, Łuszczyńska K, Lechów H. Toksyczność Q miedzi, cynku oraz kadmu, rtęci i ołowiu dla człowieka, kręgowców i organizmów wodnych. Inżynieria Środowiska 2014, 155(35):70-83.
- 9. Condello M, De Berardis B, Ammendolia MG, Barone F, Condello G, Degan P, Meschini S. ZnO nanoparticle tracking from uptake to genotoxic damage in human colon carcinoma cells. Toxicol Vitr 2016, 35:169-179.
- 10. Bel-Serrat S, Stammers A, Warthon-Medina M, Moran VH, Iglesia-Altaba I, Hermoso M, Moreno LA, Lowe NM. Factors that affect zinc bioavailability and losses in adult and elderly populations. Nutrition Rev 2013, 72(0):334-352.
- 11. Kabata-Pendias A. Soil-plant transfer of trace elements – An environmental issue. Geoderma 2004, 122:143-149.
- 12. Mattos Della Lucia C, Santos LLM, da Cruz Rodrigues KC, da Cruz Rodrigues VC, Martino HSD, Sant`Ana HMP. Bioavailability of zinc in Wistar rats fed with rice fortified with zinc oxide. Nutrients 2014, 6(6):2279-2289.
- 13. Sauer AK, Hagmeyer S, Grabrucker AM. Zinc deficiency. Nutritional Deficiency Erkekoǧlu P. (ed). In Tech, 2016, pp. 23-46.
- 14. Tayel AA, El-Tras WF, Moussa S, El-Baz AF, Mahrous H, Salem MF, Brimer L. Antibacterial action of zinc oxide nanoparticles against foodborne pathogens. J Food Safety 2011, 31(2):211-218.
- 15. Reddy KM, Feris K, Bell J, Wingett DG, Hanley C, Punnoosea A. Selective toxicity of zinc oxide nanoparticles to prokaryotic and eukaryotic systems. Appl Phys Lett 2007, 19(2):161-169.
- 16. Pasquet J, Chevalier Y, Couval E, Bouvier D, Noizet G, Morlière C, Bolzinger MA. Antimicrobial activity of zinc oxide particles on five micro-organisms of the challenge tests related to their physicochemical properties. Int J Pharm 2014, 460(1-2):92-100.
- 17. Applerot BG, Lipovsky A, Dror R, Perkas N, Nitzan Y, Lubart R, Gedanken A. Enhanced antibacterial activity of nanocrystalline ZnO due to increased ROSmediated cell injury. Adv Funct Mater 2009, 52900:842-852.
- 18. Baran A, Klimek A, Jasiewicz C. Reakcja roślin na toksyczną zawartość cynku i kadmu w glebie. Proc ECOpole 2008, 2(2):1-6.
- 19. Baran A, Jasiewicz C. Toksyczna zawartość cynku i kadmu w glebie dla różnych gatunków roślin. Ochr Środowiska i Zasobów Nat 2009, 40:157-164.
- 20. Łyszcz S. Zróżnicowana reakcja kilku gatunków roślin na nadmiar cynku. Rocz Glebozn 1991, (3/4):215-221.
- 21. Ociepa-Kubicka A, Ociepa E. Toksyczne oddziaływanie metali ciężkich na rośliny, zwierzęta i ludzi. Inżynieria i Ochr Środowiska 2012,15(2):169-180.
- 22. Suresh S, Karthikeyan S, Jayamoorthy K. Spectral investigations to the effect of bulk and nano ZnO on peanut plant leaves. Karbala Int J Mod Sci 2016, 2(2):69-77.
- 23. Wang F, Liu X, Shi Z, Tong R, Adams CA. Chemosphere Arbuscular mycorrhizae alleviate negative effects of zinc oxide nanoparticle and zinc accumulation in maize plants. A soil microcosm experiment. Chemosphere 2016, 147:88-97.
- 24. Dimkpa CO, McLean JE, Britt DW, Anderson AJ. Bioactivity and biomodification of Ag, ZnO, and CuO nanoparticles with relevance to plant performance in agriculture. Ind Biotechnol 2012, 8(6):344-357.
- 25. Bandyopadhyay S, Plascencia-Villa G, Mukherjee A, Rico CM. Science of the total environment comparative phytotoxicity of ZnO NPs, bulk ZnO, and ionic zinc onto the alfalfa plants symbiotically associated with Sinorhizobium meliloti in soil. Sci Total Environ 2015, 515-516:60-69.
- 26. Cakmak I, Marschner H. Increase in membrane permeability and exudation in roots of zinc deficient plants. J Plant Physiol 1988, 132(3):356-361.
- 27. Bai W, Zhang Z, Tian W, He X, Ma Y, Zhao Y, Chai Z. Toxicity of zinc oxide nanoparticles to zebrafish embryo: A physicochemical study of toxicity mechanism. J Nanoparticle Res 2010, 12(5):1645-1654.
- 28. Mirowski A. Cynk w żywieniu bydła. Część I. Zawartość cynku w organizmie. Życie Weter 2016, 91(1):42-44.
- 29. Kuang H, Yang P, Yang L, Aguilar ZP, Xu H. Size dependent effect of ZnO nanoparticles on endoplasmic reticulum stress signaling pathway in murine liver. J Hazard Mater 2016, 317:119-126.
- 30. Choi JS, Kim RO, Yoon S, Kim WK. Developmental toxicity of zinc oxide nanoparticles to Zebrafish (Danio rerio): A transcriptomic analysis. PLoS One 2016, 11(8):1-15.
- 31. Gapys B, Raszeja-Specht A, Bielarczyk H. Rola cynku w procesach fizjologicznych i patologicznych organizmu. J Lab Diagnostics 2014, 50(1):45-52.
- 32. Pejsak Z. Niezbędny cynk. Top Agrar Pol 2015, 4:24-26.
- 33. Harmon RJ, Torre PM. Copper and zinc: do they influence mastitis? Proc Natl Mastit Counc 1994, pp. 54-65.
- 34. Kay AR, Tóth K. Is zinc a neuromodulator? Sci Signal 2009, 1(19):1-14.
- 35. Bosco MD, Mohanasundaram DM, Drogemuller CJ, Lang CJ, Zalewski PD, Coates PT. Zinc and zinc transporter regulation in pancreatic islets and the potential role of zinc in islet transplantation. Rev Diabet Stud 2010, 7(4):263-274.
- 36. Wang S, Gao M, She Z, Zheng D, Jin C, Guo L, Zhao Y. Bioresource Technology Long-term effects of ZnO nanoparticles on nitrogen and phosphorus removal, microbial activity and microbial community of a sequencing batch reactor. Bioresour Technol 2016, 216:428-436.
Uwagi
Opracowanie ze środków MNiSW w ramach umowy 812/P-DUN/2016 na działalność upowszechniającą naukę (zadania 2017).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-7b4555d8-f7f6-47df-81b2-c26f3da0803b