PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Influence of mechanical and electromagnetic phenomena on electric motor vibrations in different power supply options

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
Results of research about influence of mechanical and electromagnetic phenomena on electric motor vibration in different supply options has been shown in this paper. Three different supply options have been taken under consideration: typical star connection, single-phase connection with work capacitor and connection through an inverter. Vibration signals recorded on electric motor end shield and frame has been digitally processed using Multi-Synchronous Averaging (MSA). This technique allowed to decompose total vibration signal into signals associated with mechanical and electromagnetic phenomena occurring in electric motor. The comparison of rms values and spectra shapes of total and decomposed vibration signals has been made. Energy shares of previously mentioned phenomena in vibration signal for different supply options has been also estimated.
Rocznik
Strony
art. no. 2020102
Opis fizyczny
Bibliogr. 23 poz., il. kolor., 1 fot., rys., wykr.
Twórcy
  • Poznan University of Technology, Faculty of Mechanical Engineering, 3 Piotrowo St, 60-965 Poznan
  • Poznan University of Technology, Faculty of Mechanical Engineering, 3 Piotrowo St, 60-965 Poznan
  • Poznan University of Technology, Faculty of Mechanical Engineering, 3 Piotrowo St, 60-965 Poznan
  • Poznan University of Technology, Faculty of Mechanical Engineering, 3 Piotrowo St, 60-965 Poznan
Bibliografia
  • 1. T. Glinka, Diagnosing of electrical machinery (in Polish), in: Inżynieria diagnostyki maszyn, Ed. B. Żółtowski, C. Cempel, PIB, Radom 2004, 633 - 654.
  • 2. F. Ohnacker, Maintenence of Electrical Equipment, in: Maintenance Engineering Handbook, Ed. L.R. Higgins, Nowy Jork 1988, 7-1 - 7-28.
  • 3. D. Miljković, Brief Reviev of Motor Current Signature Analysis, HDBKR Info Magazin, 5 (2015) 14 - 26.
  • 4. K. Roczek, T. Rogala, Induction Motor Diagnosis with use of electric parameters, Diagnostyka, 20 (2019) 65 - 74.
  • 5. S. A. Bednarz, M. Dybkowski, Induction motor windong faults detection using flux-error based MRAS estimators, Diagnostyka, 20 (2019) 87 - 96.
  • 6. M. Boudiaf, L. Cherroun et al., Real-time diangosisof three-phase induction motor machine using Arduino-UNO card based on Park’s circle method, Diagnostyka, 19 (2018) 63 - 71.
  • 7. H. Çalis, Vibration and motor current analysis of induction motors to diagnose mechanical faults, Journal of Measurements in Engineering, 2 (2014) 190 - 198.
  • 8. H. Bate, Vibration Diagnostics for Industrial Electric Motor Drives, Bruel & Kjaer Application Note, BO-0269-12, 1990.
  • 9. P. A. Delgado-Arredondo, D. Morinigo-Sotelo et al., Methodology for fault detection in induction motors via sound and vibration signals, Mechanical Systems and Signal Processing, 83 (2017) 568 - 589.
  • 10. M. Serrazin, S. Gillijns et al., Vibro-acoustic measurements and techniques for electric automotive applications, Proceedings of 43rd International Congress on Noise Control Engineering Internoise, 2014, 5128 - 5137.
  • 11. J. Tulicki, J. Petryna et al., Fault diagnosis of induction motors in selected working conditions based on axial flux signals, Technical Transactions: Electrical Engineering, 3-E (2016) 99 - 113.
  • 12. J. Petryna, M. Sułowicz et al., The use of axial flux in dynamic states testing of low and high power induction machines (in Polish), Zeszyty Problemowe - Maszyny Elektryczne, 2 (2014) 165 - 171.
  • 13. I. Gavranic, M. Vrazic et al., Induction motor rotor cage faults as ignition sources of explosive atmosphere - research on heating, Technicki Vjesnik, 24 (2017) 1025 - 1031.
  • 14. D. Staton, L. Šušnjić, Induction Motor Thermal Analysis, Strojarstvo, 51 (2009) 623 - 631.
  • 15. A. Regaz, B. Zegnini, et al., Detection of faults in the asynchronous machine by the use of smart materials, Diagnostyka, 19 (2018) 43 - 54.
  • 16. K. K. Pandey, P. H. Zope et al., Review on Fault Diagnosis in Three-Phase Induction Motor, MEDHA, 1 (2012), 53 - 58.
  • 17. M. R. Mehrjou, N. Mariun et al., Rotor fault condition monitoring techniques for squirrel-cage induction machine — A review, Mechanical Systems and Signal Processing, 25 (2011) 2828 - 2848.
  • 18. M. Lebold, K., McClintic et al., Review of vibration analysis methods for gearbox diagnostics and prognostics, Proceedings of the 54th Meeting of the Society for Machinery Failure Prevention Technology, (2000) 623 - 634.
  • 19. I. Bravo-Imaz, H. Ardakani et al., Motor current signature analysis for gearbox condition monitoring under transient speeds using wavelet analysis and dual-level time synchronous averaging, Mechanical Systems and Signal Processing, 94 (2017) 73 - 84.
  • 20. S. Brown, Discover Signal Processing - An Interactive Guide for Engineers, John Wiley & Sons Ltd, Chichester 2008, 265 - 269.
  • 21. Hitachi Industrial Equipment Systems Co., Ltd., User manual: SJ200 inverter (in Polish), NB650XA (2004).
  • 22. J. Guziński, Z. Krzemiński, Output filter of voltage inverter (in Polish), Napędy i Sterowanie, 4 (2005) 43 - 44.
  • 23. Z. Żyszkowski, Basics of electroacoustics (in Polish), Wydawnictwo Naukowo-Techniczne, Warszawa 1984, 228 - 261.
Uwagi
Opracowanie rekordu ze środków MNiSW, umowa Nr 461252 w ramach programu "Społeczna odpowiedzialność nauki" - moduł: Popularyzacja nauki i promocja sportu (2021).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-7ad3e5a6-ad95-42c7-b692-3598bf2813a2
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.