PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Analysis of climate change and its potential influence on energy performance of building and indoor temperatures, part 1: Climate change scenarios

Treść / Zawartość
Identyfikatory
Warianty tytułu
PL
Analiza zmiany klimatu i jego wpływu na charakterystykę energetyczną budynku oraz temperatury wewnętrzne, część 1: Scenariusze zmian klimatu
Języki publikacji
EN
Abstrakty
EN
The subject of this paper is to analyse the climate change and its influence on the energy performance of building and indoor temperatures. The research was made on the example of the city of Kielce, Poland. It was carried out basing on the Municipal Adaptive Plan for the city of Kielce and climate data from the Ministry of Investment and Development.The predicted, future parameters of the climate were estimated using the tool Weather Shift for Representative Concentration Pathways (RCP). The analysis took into consideration the RCP4.5 and RCP8.5 scenarios for years 2035 and 2065, representing different greenhouse gas concentration trajectories. Scenario RCP4.5 represents possible, additional radiative forcing of 4.5 W/m2 in 2100, and RCP8.5 an additional 8.5 W/m2. The calculated parameters included average month values of temperature and relative humidity of outdoor air, wind velocity and solar radiation. The results confirmed the increase of outdoor temperature in the following year. The values of relative humidity do not change significantly for the winter months, while in the summer months decrease is visible. No major changes were spotted in the level of solar radiation or wind speed. Based on the calculated parameters dynamic building modelling was carried out using the TRNSYS software. The methodology and results of the calculations will be presented in the second part of the paper.
PL
Przedmiotem artykułu jest analiza zmiany klimatu oraz jej wpływu na charakterystykę energetyczną budynku i temperaturę wewnętrzną. Badania przeprowadzono na przykładzie miasta Kielce. Ich podstawą był Miejski Plan Adaptacyjny dla miasta Kielce oraz dane klimatyczne z Ministerstwa Inwestycji i Rozwoju. Przewidywane, przyszłe parametry klimatu zostały oszacowane za pomocą narzędzia Weather Shift dla Representative Concentration Pathways (RCP). W analizie uwzględniono scenariusze RCP4.5 i RCP8.5 na lata 2035 i 2065, reprezentujące różne trajektorie wzrostu stężenia gazów cieplarnianych. Scenariusz RCP4.5 reprezentuje przewidywane, dodatkowe wymuszenie radiacyjne wynoszące 4,5 W/m2 w 2100 r., a RCP8.5 dodatkowe 8,5 W/m2. Wyznaczone parametry obejmowały średnie miesięczne wartości temperatury i wilgotności względnej powietrza zewnętrznego, prędkości wiatru i wielkości promieniowania słonecznego. Wyniki obliczeń potwierdziły wzrost temperatury zewnętrznej w kolejnych latach. Wartości wilgotności względnej powietrza nie zmieniają się znacząco dla miesięcy zimowych, natomiast w miesiącach letnich widoczny jest ich spadek. Nie zaobserwowano większych zmian w poziomie promieniowania słonecznego i prędkości wiatru. Na podstawie obliczonych parametrów przeprowadzono dynamiczne modelowanie budynku przy użyciu oprogramowania TRNSYS. Metodologia i wyniki obliczeń zostaną przedstawione w drugiej części artykułu.
Rocznik
Strony
29--42
Opis fizyczny
Bibliogr. 43 poz., il., tab.
Twórcy
  • University of Technology, Faculty of Civil Engineering, Warsaw, Poland
  • Warsaw University of Technology, Faculty of Civil Engineering, Warsaw, Poland
  • Faculty of Civil Engineering, Wroclaw University of Science and Technology, Wrocław, Poland
Bibliografia
  • [1] D. Burghila, C.-E. Bordun, M. Doru, N. Sarbu, A. Badea, and S. M. Cimpeanu, “Climate Change Effects - Where to Next?,” Agric. Agric. Sci. Procedia, 2015, https://doi.org/10.1016/j.aaspro.2015.08.107
  • [2] H. Kawase et al., “Changes in extremely heavy and light snow-cover winters due to global warming over high mountainous areas in central Japan,” Prog. Earth Planet. Sci., 2020, doi: 10.1186/s40645-020-0322-x. https://doi.org/10.1186/s40645-020-0322-x
  • [3] Z. Zhou et al., “Is the cold region in Northeast China still getting warmer under climate change impact?,” Atmos. Res., 2020, https://doi.org/10.1016/j.atmosres.2020.104864
  • [4] J. Hansen, M. Sato, R. Ruedy, K. Lo, D. W. Lea, and M. Medina-Elizade, “Global temperature change,” Proc. Natl. Acad. Sci. U. S. A., 2006, https://doi.org/10.1073/pnas.0606291103
  • [5] Z. W. Kundzewicz et al., “Flood risk and climate change: global and regional perspectives,” Hydrol. Sci. J., 2014, https://doi.org/10.1080/02626667.2013.857411
  • [6] L. Gu et al., “Projected increases in magnitude and socioeconomic exposure of global droughts in 1.5 and 2 °C warmer climates,” Hydrol. Earth Syst. Sci., 2020, https://doi.org/10.5194/hess-24-451-2020
  • [7] M. Kocsis, A. Dunai, A. Makó, A. Farsang, and J. Mészáros, “Estimation of the drought sensitivity of Hungarian soils based on corn yield responses,” J. Maps, 2020, https://doi.org/10.1080/17445647.2019.1709576
  • [8] E. M. Blyth, A. Martínez-de la Torre, and E. L. Robinson, “Trends in evapotranspiration and its drivers in Great Britain: 1961 to 2015,” Prog. Phys. Geogr., 2019, https://doi.org/10.1177/0309133319841891
  • [9] V. Diaz, G. A. Corzo Perez, H. A. J. Van Lanen, D. Solomatine, and E. A. Varouchakis, “Characterisation of the dynamics of past droughts,” Sci. Total Environ., 2019, https://doi.org/10.1016/j.scitotenv.2019.134588
  • [10] J. Ma et al., “The Characteristics of Climate Change and Adaptability Assessment of Migratory Bird Habitats in Wolonghu Wetlands,” Wetlands, 2019, https://doi.org/10.1007/s13157-018-1068-8
  • [11] R. Bhambri et al., “The hazardous 2017-2019 surge and river damming by Shispare Glacier, Karakoram,” Sci. Rep., 2020, https://doi.org/10.1038/s41598-020-61277-8
  • [12] D. Parkes and B. Marzeion, “Twentieth-century contribution to sea-level rise from uncharted glaciers,” Nature. 2018, https://doi.org/10.1038/s41586-018-0687-9
  • [13] M. Zemp et al., “Global glacier mass changes and their contributions to sea-level rise from 1961 to 2016,” Nature. 2019, https://doi.org/10.1038/s41586-019-1071-0
  • [14] A. F. S. Ribeiro, A. Russo, C. M. Gouveia, P. Páscoa, and C. A. L. Pires, “Probabilistic modelling of the dependence between rainfed crops and drought hazard,” Nat. Hazards Earth Syst. Sci. Discuss., 2019, https://doi.org/10.5194/nhess-2019-37
  • [15] T. Frederikse et al., “Antarctic Ice Sheet and emission scenario controls on 21st-century extreme sea-level changes,” Nat. Commun., 2020, https://doi.org/10.1038/s41467-019-14049-6
  • [16] A. Di Luca, R. de Elía, M. Bador, and D. Argüeso, “Contribution of mean climate to hot temperature extremes for present and future climates,” Weather Clim. Extrem., 2020, https://doi.org/10.1016/J.WACE.2020.100255
  • [17] T. F. Stocker et al., Climate change 2013 the physical science basis: Working Group I contribution to the fifth assessment report of the intergovernmental panel on climate change. 2013.
  • [18] S. Schaphoff, U. Heyder, S. Ostberg, D. Gerten, J. Heinke, and W. Lucht, “Contribution of permafrost soils to the global carbon budget,” Environ. Res. Lett., 2013, https://doi.org/10.1088/1748-9326/8/1/014026
  • [19] D. M. Lawrence, C. D. Koven, S. C. Swenson, W. J. Riley, and A. G. Slater, “Permafrost thaw and resulting soil moisture changes regulate projected high-latitude CO2 and CH4 emissions,” Environ. Res. Lett., 2015, https://doi.org/10.1088/1748-9326/10/9/094011
  • [20] S. T. Ngai et al., “Future projections of Malaysia daily precipitation characteristics using bias correction technique,” Atmos. Res., 2020, https://doi.org/10.1016/j.atmosres.2020.104926
  • [21] B. E. Berglund, “Human impact and climate changes - Synchronous events and a causal link?,” Quat. Int., 2003, https://doi.org/10.1016/s1040-6182(02)00144-1
  • [22] C. K. Folland et al., “Global temperature change and its uncertainties since 1861,” Geophys. Res. Lett., 2001, https://doi.org/10.1029/2001GL012877
  • [23] A. Goliger et al., “Comparative study between poland and south africa wind climates, the related damage and implications of adopting the eurocode for wind action on buildings,” Arch. Civ. Eng., 2013, https://doi.org/10.2478/ace-2013-0003
  • [24] T. Skoczkowski, S. Bielecki, A. Węglarz, M. Włodarczak, and P. Gutowski, “Impact assessment of climate policy on Poland’s power sector,” Mitig. Adapt. Strateg. Glob. Chang., 2018, https://doi.org/10.1007/s11027-018-9786-z
  • [25] A. Miszczuk, “Influence of air tightness of the building on its energy-efficiency in single-family buildings in Poland,” in MATEC Web of Conferences, 2017, vol. 117, https://doi.org/10.1051/matecconf/201711700120
  • [26] S. Firlag, “Wpływ rodzaju systemu ogrzewczego na komfort cieplny i zużycie energii w jednorodzinnych budynkach pasywnych,” Czas. Tech., vol. 107, no. 4, pp. 49-57, 2010.
  • [27] Sotiris Vardoulakis, Chrysanthi Dimitroulopoulou, John Thornes, Ka-Man Lai, Jonathon Taylor, Isabella Myers, Clare Heaviside, Anna Mavrogianni, Clive Shrubsole, Zaid Chalabi, Michael Davies, Paul Wilkinson, Impact of climate change on the domestic indoor environment and associated health risks in the UK, Environment International, Volume 85, 2015, Pages 299-313, ISSN 0160-4120, https://doi.org/10.1016/j.envint.2015.09.010
  • [28] Mancini F., Lo Basso G. How Climate Change Affects the Building Energy Consumptions Due to Cooling, Heating, and Electricity Demands of Italian Residential Sector. Energies. 2020; 13(2): p. 410. https://doi.org/10.3390/en13020410
  • [29] Stagrum, A.E.; Andenæs, E.; Kvande, T.; Lohne, J. Climate Change Adaptation Measures for Buildings - A Scoping Review. Sustainability 2020, 12, 1721. https://doi.org/10.3390/su12051721
  • [30] I. Szer, E. Błazik-Borowa, and J. Szer, “The Influence of Environmental Factors on Employee Comfort Based on an Example of Location Temperature,” Arch. Civ. Eng., 2017, https://doi.org/10.1515/ace-2017-0035
  • [31] Knera D, Heim D. Application of a BIPV to cover net energy use of the adjacent office room. Manag Environ Qual An Int J 2016;27:649-62.https://doi.org/10.1108/MEQ-05-2015-0104
  • [32] Wieprzkowicz A., Heim D. Energy performance of dynamic thermal insulation built in the experimental façade system. Manag Environ Qual 2016;27. https://doi.org/10.1108/MEQ-05-2015-0097
  • [33] Barecka M.H., Zbicinski I., Heim D. Environmental, energy and economic aspects in a zero-emission façade system design. Manag Environ Qual An Int J 2016;27:708-21. https://doi.org/10.1108/MEQ-05-2015-0105
  • [34] Firląg S., Piasecki M. NZEB Renovation Definition in a Heating Dominated Climate: Case Study of Poland. Applied Sciences. 2018; 8(9):1605. https://doi.org/10.3390/app8091605
  • [35] M. Kuśmierz, A., Hajto, M., Kacprzyk, W., Lisowska-Mieszkowska, E., Pawlak, J., Rymwid-Mickiewicz, K., Śnieżek, T., Grzegorczyk, I., Gorczyński, C., Kacprzyk, K., Borzyszkowski, J., Kamiński, Plan Adaptacji do zmian klimatu Miasta Kielce do roku 2030. Kielce, Warszawa, 2018.
  • [36] S. C. Maberly et al., “Global lake thermal regions shift under climate change,” Nat. Commun., 2020, https://doi.org/10.1038/s41467-020-15108-z
  • [37] Ministry of Investment and Development, Typical meteorological years and statistical climate data for energy calculations of buildings. Warsaw, 2018
  • [38] A. D. McGuire et al., “Dependence of the evolution of carbon dynamics in the northern permafrost region on the trajectory of climate change,” Proc. Natl. Acad. Sci. U. S. A., 2018, https://doi.org/10.1073/pnas.1719903115
  • [39] K. Riahi, A. Grübler, and N. Nakicenovic, “Scenarios of long-term socio-economic and environmental development under climate stabilization,” Technol. Forecast. Soc. Change, 2007, https://doi.org/10.1016/j.techfore.2006.05.026
  • [40] Intergovernmental Panel on Climate Change, Towards new scenarios for analysis of emissions, climate change, impacts, and response strategies. IPCC Expert Meeting Report on New Scenarios. Noordwijkerhout, 2008.
  • [41] J. Wibig, “Heat waves in Poland in the period 1951–2015: trends, patterns and driving factors”, Meteorol. Hydrol. Water Manag., 2017, https://doi.org/10.26491/mhwm/78420
  • [42] A. Krzyżewska and J. Dyer, “The August 2015 mega-heatwave in Poland in the context of past events”, Weather, 2018, https://doi.org/10.1002/wea.3244
  • [43] S. Russo, J. Sillmann, and E. M. Fischer, “Top ten European heatwaves since 1950 and their occurrence in the coming decades”, Environ. Res. Lett., 2015, https://doi.org/10.1088/1748-9326/10/12/124003
Uwagi
Opracowanie rekordu ze środków MNiSW, umowa Nr 461252 w ramach programu "Społeczna odpowiedzialność nauki" - moduł: Popularyzacja nauki i promocja sportu (2021).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-7accf5d6-52b3-4513-93f4-ae9fc67c5cb7
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.