Tytuł artykułu
Treść / Zawartość
Pełne teksty:
Identyfikatory
Warianty tytułu
Języki publikacji
Abstrakty
A smart cooling system to control the ambient temperature of a premise in Amman, Jordan, is investigated and implemented. The premise holds 650 people and has 14 air conditioners with the cooling capacity ranging from 3 to 5 ton refrigerant (TR) each. The control of the cooling system includes implementing different electronics circuits that are used to sense the ambient temperature and humidity, count the number of people in the premise and then turn ON/OFF certain air conditioner(s). The data collected by different electronic circuits are fed wirelessly to a microcontroller, which decides which air conditioner will be turned ON/OFF, its location and its desired set cooling temperature. The cooling system is integrated with an on-grid solar photovoltaic energy system to minimize the operational cost of the overall cooling system.
Słowa kluczowe
Czasopismo
Rocznik
Tom
Strony
39--44
Opis fizyczny
Bibliogr. 10 poz., tab., rys.
Twórcy
autor
- School of Engineering, The University of Jordan, Amman, Jordan
autor
- School of Engineering, The University of Jordan, Amman, Jordan
autor
- School of Engineering, The University of Jordan, Amman, Jordan
autor
- School of Engineering, The University of Jordan, Amman, Jordan
autor
- School of Engineering, The University of Jordan, Amman, Jordan
autor
- School of Engineering, The University of Jordan, Amman, Jordan
Bibliografia
- 1. Ari S., Cosden I.A., Khalifa H.E., Dannenhoffer J.F., Wilcoxen P., and Isik C., 2005. Constrained fuzzy logic approximation for indoor comfort and energy optimization. In: Proc. IEEE Fuzzy Inf. Process. Soc. Annu. Meet., Jun., 500–504.
- 2. Calvino F., La Gennusa M., Rizzo G., and Scaccianoce G., 2004. The control of indoor thermal comfort conditions: Introducing a fuzzy adaptive controller,” Energy Buildings, 36(2), 97–102.
- 3. Dounis A.I. and Caraiscos C., 2009. Advanced control systems engineering for energy and comfort management in a building environment–A review. Renewable Sustainable Energy Rev., 13(6–7), 1246–1261.
- 4. Fasfous J. Al Asfar, Hamdan M.A., Al-Salaymeh A., Sakhrieh A., Al-hamamre Z., and Al-bawwab A., 2013. Potential of utilizing solar cooling in the University of Jordan. Energy Conversion and Management, vol. 65, 729–735.
- 5. Liang J. and Du R., 2005. Thermal comfort control based on neural network for HVAC application,” in Proc. IEEE Control Appl. Conf., Toronto, Canada, 819–824.
- 6. Mathews E.H., Botha C.P., Arndt D.C., and Malan A., 2001. HVAC control strategies to enhance comfort and minimise energy usage. Energy Buildings, 33(8), 853–863.
- 7. Nassif N., Kajl S., and Sabourin R., 2004. Evolutionary algorithms for multi-objective optimization in HVAC system control strategy. In: Proc. IEEE North Amer. Fuzzy Inf. Proc. Soc. Annu. Meet. (NAFIPS), Banff, Canada, Jun., vol. 1, 51–56.
- 8. National Solar Radiation Data Base, Typical Meteorological Year 2. Solar Radiation Research Laboratory (online: http://www.nrel.gov/midc/srrl_bms/).
- 9. Thomas A.G., Jahangiri P., Wu D., Cai C., Zhao H., Aliprantis D.C., Tesfatsion L., 2012. Intelligent Residential Air-Conditioning System With Smart-Grid Functionality. IEEE Transactions on Smart Grid, 3(4), 2240–2251.
- 10. Wang Z., Wang L., Dounis A.I., Yang R., 2012. Multi-agent control system with information fusion based comfort model for smart buildings. Applied Energy, vol. 99, 247–254.
Uwagi
PL
Opracowanie rekordu w ramach umowy 509/P-DUN/2018 ze środków MNiSW przeznaczonych na działalność upowszechniającą naukę (2018).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-79fce1ee-6fd9-473f-8683-3cf46069069e