PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Early detection of phosphorus deficiency stress in cucumber at the cellular level using chlorophyll fluorescence signals

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
Abiotic stressors contribute to growth restriction and developmental disorders in plants. Early detection of the first signs of changes in plant functioning is very important. The objective of this study was to identify chlorophyll fluorescence parameters that change under phosphorus deficiency stress in cucumber. In this work, a trail to study the early changes caused by phosphorus deficiency in cucumber plants by analysing their photosynthetic performance is presented. Chlorophyll-a fluorescence (ChF) parameters were measured every 7 days for a period of 28 days. Measurements were made separately on young and old leaves and on cucumber fruit. Parameters that decreased during the stress were: p2G, PIabs, PItotal, REo/CSo, and TRo/CSo. P deficiency decreased total electron carriers per RC (ECo/RC), yields (TRo/ABS (Fv/Fm), ETo/TRo, REo/ETo, ETo/ABS and REo/ABS), fluxes (REo/RC and REo/CSo) and fractional reduction of PSI end electron acceptors, and damaged all photochemical and non-photochemical redox reactions. Principal component analysis revealed a group of ChF parameters that may indicate early phosphorus deficiency in cucumber plants. Our results are used in the discovery of sensitive bioindicators of phosphorus deficiency in cucumber plants. Most JIP test parameters are linked to mathematical equations, so we recommend using of advanced statistical tools, such as principal component analysis, which should be considered very useful for stress identification. It has also been shown to be more effective in multivariate methods compared to univariate statistical methods was demonstrated.
Wydawca
Rocznik
Strony
176--186
Opis fizyczny
Bibliogr. 39 poz., rys., tab., wykr.
Twórcy
  • Warsaw University of Life Sciences - SGGW, Department of Biometry, Institute of Agriculture, 166 Nowoursynowska St., 02-787 Warsaw, Poland
  • Warsaw University of Life Sciences - SGGW, Department of Environmental Management, Institute of Environmental Engineering, Poland
  • Warsaw University of Life Sciences - SGGW, Department of Vegetable and Medicinal Plants, Institute of Horticultural Sciences, Poland
  • Warsaw University of Life Sciences - SGGW, Department of Vegetable and Medicinal Plants, Institute of Horticultural Sciences, Poland
  • Warsaw University of Life Sciences – SGGW, Department of Botany, Institute of Biology, Poland
  • Warsaw University of Life - SGGW, Department of Fundamentals of Engineering and Power Engineering, Institute of Mechanical Engineering, Poland
  • The National Institute of Horticultural Research, Skierniewice, Poland
  • Warsaw University of Life Sciences - SGGW, Department of Plant Physiology, Institute of Biology, Poland
  • Warsaw University of Life Sciences - SGGW, Department of Plant Physiology, Institute of Biology, Poland
Bibliografia
  • ALEKSANDROV V., KRASTEVA V., PAUNOV M., CHEPISHEVA M., KOUSMANOVA M., KALAJI H. M., GOLTSEV V. 2014. Deficiency of some nutrie nt elements in bean and maize plants analyzed by luminescent method. Bulgarian Journal of Agricultural Science. Vol. 20. Suppl. 1 p. 24–30.
  • BAKER N.R., ROSENQVIST E. 2004. Applications of chlorophyll fluorescence can improve crop production strategies: An examination of future possibilities. Journal of Experimental Botany. Vol. 55(403) p. 1607–1621. DOI 10.1093/jxb/erh196.
  • BELKHODJA R., MORALES F., QUILEZ R., LOPEZ-MILLAN A.F., ABADIA A., ABADIA J. 1998. Iron deficiency causes changes in chlorophyll fluorescence due to the reduction in the dark of the photo system II acceptor side. Photosynthesis Research. Vol. 56 p. 265–276. DOI 10.1023/A:1006039917599.
  • BRESTIC M., ZIVCAK M., KALAJI H.M., CARPENTIER R., ALLAKHVERDIEV S.I. 2012. Photosystem II thermostability in situ: environmentally induced acclimation and genotype-specific reactions in Triticum aestivum L. Plant Physiology and Biochemistry. Vol. 57 p. 93–105. DOI 10.1016/j.plaphy.2012.05.012.
  • CETNER M.D., KALAJI H.M., BORUCKI W., KOWALCZYK K. 2020. Special issue in honour of Prof. Reto J. Strasser – Phosphorus deficiency affects the I-step of chlorophyll a fluorescence induction curve of radish. Photosynthetica. Vol. 58(Sl) p. 671–681. DOI 10.32615/ps.2020.015.
  • DONNINI S., CASTAGNA A., GUIDI L., ZOCCHI G., RANIERI A. 2003. Leaf responses to reduced iron availability in two tomato genotypes: T3238FER (iron efficient) and T3238fer (iron inefficient). Journal of Plant Nutrition. Vol. 26 p. 2137–2148. DOI 10.1081/PLN-120024270.
  • FEY H., PIANO D., HORN R., FISCHER D., SCHRÖDER W.P., BOCK R., BÜCHEL C. 2008. Isolation of highly active photosystem II core complexes with a His-tagged Cyt b559 subunit from transplastomic tobacco plants. Biochimica et Biophysica Acta (BBA) – Bioenergetics. Vol. 1777(12) p. 1501–1509. DOI 10.1016/j.bbabio.2008.09.012.
  • FORCE L., CRITCHLEY C., VAN RENSEN J.J.S. 2003. New fluorescencje parameters for monitoring photosynthesis in plants 1. The effect of illumination on the fluorescence parameters of the JIP-test. Photosynthesis Research. Vol. 78, 17. DOI 10.1023/A:1026012116709.
  • FRYDENVANG J., VAN MAARSCHALKERWEERD M., CARSTENSEN A., MUNDUS S., SCHMIDT S.B., PEDAS P.R., LAURSEN K.H., SCHJOERRING J.K., HUSTED S. 2015. Sensitive detection of phosphorus deficiency in plants using chlorophyll a fluorescence. Plant Physiology. Vol. 169(1) p. 353–361. DOI 10.1104/pp.15.00823.
  • GOLTSEV V., ZAHARIEVA I., CHERNEV P., KOUZMANOVA M., KALAJI H.M., YORDANOV I., ..., STRASSER R.J. 2012. Drought-induced modifications of photosynthetic electron transport in intact leaves: Analysis and use of neural networks as a tool for a rapid non-invasive estimation. Bochimica et Biophsica Acta (BBA) – Bioenergetics. Vol. 1817(8) p. 1490–1498. DOI 10.1016/j.bbabio.2012.04.018.
  • GUIDI L., DEGL’INNOCENTI E. 2011. Imaging of chlorophyll a fluorescence: A tool to study abiotic stress in plants. In: Abiotic stress in plants – Mechanisms and adaptations. Eds. A. Shanker, B. Venkateswarlu. London. IntechOpen. DOI 10.5772/22281.
  • HAMDANI S., QU M., XIN C.P., LI M., CHU C., ZHU X.G. 2015. Variations between the photosynthetic properties of elite and landrace Chinese rice cultivars revealed by simultaneous measurements of 820 nm transmission signal and chlorophyll a fluorescence induction. Journal of Plant Physiology. Vol. 177 p. 128–138. DOI 10.1016/j.jplph.2014.12.019.
  • HANIEWICZ P., FLORIS D., FARCI D., KIRKPATRICK J., LOI M.C., BÜCHEL C., BOCHTLER M., PIANO D. 2015. Isolation of plant photosystem II complexes by fractional solubilization. Frontiers in Plant Science. Vol. 6, 1100. DOI 10.3389/fpls.2015.01100.
  • HORACZEK T., DĄBROWSKI P., KALAJI H.M., BACZEWSKA-DĄBROWSKA A.H., PIETKIEWICZ S., STĘPIEŃ W., GOZDOWSKI D. 2020. JIP-test as a tool for early detection of the macronutrients deficiency in Miscanthus plants. Photosynthetica. Vol. 58. Spec. Iss. p. 322–332. DOI 10.32615/ps.2019.177.
  • JELALI N., SALAH I.B., M’SEHLI W., DONNINI S., ZOCCHI G., GHARSALLI M. 2011. Comparison of three pea cultivars (Pisum sativum) regarding their responses to direct and bicarbonate-induced iron deficiency. Scientia Horticulturae. Vol. 129 p. 548–553. DOI 10.1016/j.scienta.2011.06.010.
  • JOLY D., CARPENTIER R. 2007. Regulation of energy dissipation in photosystem I by the redox state of the plastoquinone pool. Biochemistry. Vol. 46 p. 5534–5541. DOI 10.1021/bi602627d.
  • JOLY D., JEMÂA E., CARPENTIER R. 2010. Redox state of the photosynthetic electron transport chain in wild-type and mutant leaves of Arabidopsis thaliana: Impact on photosystem II fluorescence. Journal of Photochemistry and Photobiology, B – Biology. Vol. 98 p. 180––187. DOI 10.1016/j.jphotobiol.2009.12.004.
  • KALAJI M.H., GOLTSEV V.N., ŻUK-GOŁASZEWSKA K., ZIVCAK M., BRESTIC M. 2017a. Chlorophyll fluorescence: Understanding crop performance – Basics and applications. 1st ed. Boca Raton. CRC Press. ISBN 9781315153605 pp. 244. DOI 10.1201/9781315153605.
  • KALAJI H.M., SCHANSKER G., BRESTIC M., BUSSOTTI F., CALATAYUD A., FERRONI L., ..., BĄBA W. 2017b. Frequently asked questions about chlorophyll fluorescence, the sequel. Photosynthesis Research. Vol. 132(1) p. 13–66. DOI 10.1007/s11120-016-0318-y.
  • KALAJI H.M., SCHANSKER G., LADLE R.J., GOLTSEV V., BOSA K., ALLAKHVERDIEV S.I., ..., ZIVCAK M. 2014. Frequently asked questions about in vivo chlorophyll fluorescence: Practical issues. Photosynthesis Research. Vol. 122 p. 121–158. DOI 10.1007/s11120-014-0024-6.
  • LIN Z.-H., CHEN L.-S., CHEN R.-B., Zhang F.-Z., Jiang H.-X., Tang N. 2009. CO 2 assimilation, ribulose-1,5-bisphosphate carboxylase/oxygenase, carbohydrates and photosynthetic electron transport probed by the JIP-test, of tea leaves in response to phosphorus supply. BMC Plant Biology. Vol. 9, 43. DOI 10.1186/1471-2229-9-43.
  • MAXWELL K., JOHNSON G.N. 2000. Chlorophyll fluorescence – A practical guide. Journal of Experimental Botany. Vol. 51 p. 659–668. DOI 10.1093/jexbot/51.345.659.
  • MOLASSIOTIS A., TANOU G., DIAMANTIDIS G., PATAKAS A., THERIOS I. 2006. Effects of 4-month Fe deficiency exposure on Fe reduction mechanism, photosynthetic gas exchange, chlorophyll fluorescence and antioxidant defense in two peach rootstocks differing in Fe deficiency tolerance. Journal of Plant Physiology. Vol. 163 p. 176–185. DOI 10.1016/j.jplph.2004.11.016.
  • MORALES F., BELKHODJA R., ABADIA A., ABADIA J. 2000. Photosystem II efficiency and mechanisms of energy dissipation in iron-deficient, field grown pear trees (Pyrus communis L.). Photosynthesis Research. Vol. 63 p. 9–21. DOI 10.1023/A:1006389915424.
  • OSMAN K.T. 2013. Plant nutrients and soil fertility management. In: Soils. Principles, properties and management. Dordrecht. Springer p. 129–159. DOI 10.1007/978-94-007-5663-2_10.
  • PIANO D., COCCO E., GUADALUPI G., KALAJI H.M., KIRKPATRICK J., FARCI D. 2019. Characterisation under quasi-native conditions of the capsanthin/capsorubin synthase from Capsicum annum L. Plant Physiology and Biochemistry. Vol. 143 p. 165–175. DOI 10.1016/j.plaphy.2019.09.007.
  • PIANO D., EL ALAOUI S., KORZA H.J., FILIPEK R., SABALA I., HANIEWICZ P., BÜCHEL C., DE SANCTIS D., BOCHTLER M. 2010. Crystallization of the photosystem II core complex and its chlorophyll binding subunit CP43 from transplastomic plants of Nicotiana tabacum. Photosynthesis Research. Vol. 106 p. 221–226. DOI 10.1007/s11120-010-9597-x.
  • PORRA R.J., THOMPSON W.A., KRIEDMANN P.E. 1989. Determination of accurate extinction coefficients and simultaneous equations for assaying chlorophylls a and b with four different solvents: Verifications of the concentration of chlorophyll standards by atomic absorption spectroscopy. Biochimica et Biophysica Acta (BBA) – Bioenergetics. Vol. 975 p. 384–394. DOI 10.1016/S0005-2728(89)80347-0.
  • SAMBORSKA I.A., KALAJI N.M., SIECZKO L., BORUCKI W., MAZUR R., KOUZMANOVA M., GOLTSEV V. 2019. Can just one-second measurement of chlorophyll a fluorescence be used to predict sulphur deficiency in radish (Raphanus sativus L. sativus) plants? Current Plant Biology. Vol. 19, 100096. DOI 10.1016/j.cpb.2018.12.002.
  • SAMBORSKA I.A., KALAJI H.M., SIECZKO L., GOLTSEV V., BORUCKI W., JAJOO A. 2018. Structural and functional disorder in the photosynthetic apparatus of radish plants under magnesium deficiency. Functional Plant Biology. Vol. 45 p. 668–679. DOI 10.1071/FP17241.
  • SCHANSKER G., TÓTH S.Z., STRASSER R.J. 2005. Methylviologen and dibromothymoquinone treatments of pea leaves reveal the role of photosystem I in the Chl a fluorescence rise OJIP. Biochimica et. Biophysica Acta (BBA) – Bioenergetics. Vol. 1706 p. 250–261. DOI 10.1016/j.bbabio.2004.11.006.
  • SITKO K., GIEROŃ Ż., SZOPIŃSKI M., ZIELEŹNIK-RUSINOWSKA P., RUSINOWSKI S., POGRZEBA M., DASZKOWSKA-GOLEC A., KALAJI H.M., MAŁKOWSKI E. 2019. Influence of short-term macronutrient deprivation in maize on photosynthetic characteristics, transpiration and pigment content. Scientific Reports. Vol. 9, 14181. DOI 10.1038/s41598-019-50579-1.
  • SMETHURST C.F., GARNETT T., SHABALA S. 2005. Nutritional and chlorophyll fluorescence responses of lucerne (Medicago sativa) to waterlogging and subsequent recovery. Plant Soil. Vol. 270 p. 31–45. DOI 10.1007/s11104-004-1082-x.
  • SOLTI A., GÁSPÁR L., SZIGETI Z., MESZAROS I., SARVARI E. 2008. F690-F740 is more suitable than F690/F740 for mapping the regeneration of Cd-induced chlorosis in poplar leaves by fluorescence imaging. Acta Biologica Szegediensis. Vol. 52 p. 191–194.
  • STIRBET A., GOVINDJEE 2011. On the relation between Kautsky effect (chlorophyll a fluorescence induction) and photosystem II: Basics and applications of the OJIP fluorescence transient. Journal of Photochemistry and Photobiology B: Biology. Vol. 104 p. 236–257.
  • STRASSER R.J. 2000. The fluorescence transient as a tool to characterize and screen photosynthetic samples. In: Probing photosynthesis: Mechanism, regulation and adaptation. Eds. M. Yunus, U. Pathre, P. Mohanty. Boca Raton. CRC Press p. 445–483.
  • STRASSER R.J., TSIMILLI-MICHAEL M., SRIVASTAVA A. 2004. Analysis of the chlorophyll a fluorescence transient. In: Chlorophyll a fluorescence: A signature of photosynthesis. Eds. G.C. Papageorgiou, Govindjee. New York. Springer p. 321–362. DOI 10.1007/978-1-4020-3218-9_12.
  • URMI T.A., RAHMAN M.M., ISLAM M.M., ISLAM M.A., JAHAN N.A., MIA M. A.B., ..., KALAJI H.M. 2022. Integrated nutrient management for rice yield, soil fertility, and carbon sequestration. Plants. Vol. 11(1), 138. DOI 10.3390/plants11010138.
  • WHITE P.J., HAMMOND J.P. 2008. Phosphorus nutrition of terrestrial plants. In: The ecophysiology of plant phosphorus interactions. Vol. 7. Eds. P.J. White, J.P. Hammond, Dordrecht. Springer p. 51–81. DOI 10.1007/978-1-4020-8435-5_4.
Uwagi
Opracowanie rekordu ze środków MEiN, umowa nr SONP/SP/546092/2022 w ramach programu "Społeczna odpowiedzialność nauki" - moduł: Popularyzacja nauki i promocja sportu (2022-2023).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-79f9b72f-ff36-4376-a070-e79f1b379aef
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.