Tytuł artykułu
Identyfikatory
Warianty tytułu
Języki publikacji
Abstrakty
Electroencephalography (EEG) is the signal of intrigue that has immense application in the clinical diagnosis of various neurological, psychiatric, psychological, psychophysiological, and neurocognitive disorders. It is significantly crucial in neural communication, brain-computer interface, and other practical tasks. EEG signal is exceptionally susceptible to artifacts, which are external noise signals originated from non-cerebral regions. The interference of artifacts in EEG signals can potentially affect the original recorded EEG signal quality and pattern. Therefore, artifact removal from EEG signal is critically important before applying it to a specific task for accurate outcomes. Researchers have proposed numerous techniques to remove various artifacts present in the contaminated EEG signal. However, neither optimum method nor criterion stands standard for endorsement of clinically recorded EEG signals. Therefore, the research related to artifact elimination from EEG signal is challenging and perplexing task. This paper attempts to give an extensive outline of the advancement in methodologies to eliminate one of the most common artifacts, i.e., ocular artifact. It is anticipated that the study will enlighten the researchers on all the existing ocular artifact elimination techniques with a validated simulation model on the recorded EEG signal. In future advancements, Standard norms in artifact elimination techniques are expected to diminish the neurologist’s load by substantiating the clinical diagnosis after gaining correct information from artifact-free EEG signals.
Wydawca
Czasopismo
Rocznik
Tom
Strony
960--996
Opis fizyczny
Bibliogr. 281 poz., rys., tab.
Twórcy
autor
- Department of Electronics and Communication Engineering, National Institute of Technology, Patna, India
autor
- Department of Electronics and Communication Engineering, National Institute of Technology, Patna, India
autor
- Department of Electronics and Communication Engineering, National Institute of Technology, Patna 800005, India
Bibliografia
- [1] Subha DP, Joseph PK, Acharya UR, Lim CM. EEG signal analysis: a survey. J Med Syst 2010;34:195–212. https://doi.org/10.1007/s10916-008-9231-z.
- [2] Teplan M et al. Fundamentals of EEG measurement. Meas Sci Rev 2002;2:1–11.
- [3] Natarajan K, Acharya UR, Alias F, Tiboleng T, Puthusserypady SK. Nonlinear analysis of EEG signals at different mental states. Biomed Eng Online 2004;3:1–11. https://doi.org/10.1186/1475-925X-3-7.
- [4] Kannathal N, Acharya UR, Lim CM, Sadasivan PK. Characterization of EEG - a comparative study. Comput Methods Programs Biomed 2005;80:17–23. https://doi.org/ 10.1016/j.cmpb.2005.06.005.
- [5] Al-Nuaimi AHH, Jammeh E, Sun L, Ifeachor E. Complexity measures for quantifying changes in electroencephalogram in Alzheimer’s disease. Complexity 2018;2018. https://doi.org/10.1155/2018/8915079.
- [6] Ranjan R, Arya R, Fernandes SL, Sravya E, Jain V. A fuzzy neural network approach for automatic K-complex detection in sleep EEG signal. Pattern Recognit Lett 2018;115:74–83. https://doi.org/10.1016/j.patrec.2018.01.001.
- [7] Berry RB, Gamaldo CE, Harding SM, Brooks R, Lloyd RM, Vaughn BV, et al. AASM scoring manual version 2.2 updates: New chapters for scoring infant sleep staging and home sleep apnea testing. Am Acad Sleep Med 2015;11. https://doi.org/10.5664/jcsm.5176.
- [8] Van de Steen F, Faes L, Karahan E, Songsiri J, Valdes-Sosa PA, Marinazzo D. Critical comments on EEG sensor space dynamical connectivity analysis. Brain Topogr 2019;32:643–54. https://doi.org/10.1007/s10548-016-0538-7.
- [9] Górecka J, Biedka A. Determination of ocular artifacts in the clinical EEG software by a peripheral device. Electronics 2021;10. https://doi.org/10.3390/electronics10020108.
- [10] Gerla V, Kremen V, Covassin N, Lhotska L, Saifutdinova EA, Bukartyk J, et al. Automatic identification of artifacts and unwanted physiologic signals in EEG and EOG during wakefulness. Biomed Signal Process Control 2017;31:381–90. https://doi.org/10.1016/j.bspc.2016.09.006.
- [11] Al-salmanW, Li Y, Wen P, Diykh M. An efficient approach for EEG sleep spindles detection based on fractal dimension coupled with time frequency image. Biomed Signal Process Control 2018;41:210–21. https://doi.org/10.1016/j.bspc.2017.11.019.
- [12] Ranjan R, Arya R, Kshirsagar P, Jain V, Jain DK, Sangaiah AK. Real time eye blink extraction circuit design from EEG signal for ALS patients. J Med Biol Eng 2018;38:933–42. https://doi.org/10.1007/s40846-017-0357-7.
- [13] Jiang D, Lu Y nan, Ma Y, Wang Y. Robust sleep stage classification with single-channel EEG signals using multimodal decomposition and HMM-based refinement. Expert Syst Appl 2019;121:188–203. 10.1016/j.eswa.2018.12.023.
- [14] Merikanto I, Utge S, Lahti J, Kuula L, Makkonen T, Lahti-Pulkkinen M, et al. Genetic risk factors for schizophrenia associate with sleep spindle activity in healthy adolescents. J Sleep Res 2019;28. https://doi.org/10.1111/jsr.12762 e12762.
- [15] Acharya UR, Vinitha Sree S, Swapna G, Martis RJ, Suri JS. Automated EEG analysis of epilepsy: a review. Knowledge-Based Syst 2013;45:147–65. https://doi.org/10.1016/j.knosys.2013.02.014.
- [16] Romero S, Mañanas MA, Clos S, Gimenez S, Barbanoj MJ. Reduction of EEG Artifacts by ICA in Different Sleep Stages. Annu. Int. Conf. IEEE Eng. Med. Biol.-Proc., vol. 3, IEEE; 2003, p. 2675–8. 10.1109/iembs.2003.1280467.
- [17] Cassani R, Falk TH, Fraga FJ, Kanda PAM, Anghinah R. The effects of automated artifact removal algorithms on electroencephalography-based alzheimer’s disease diagnosis. Front Aging Neurosci 2014;6:55. https://doi.org/10.3389/fnagi.2014.00055.
- [18] Labate D, La Foresta F, Mammone N, Morabito FC. Effects of artifacts rejection on EEG complexity in Alzheimer’s disease. Smart Innov. Syst. Technol., vol. 37, Springer; 2015, p. 129–36. 10.1007/978-3-319-18164-6_13.
- [19] Faust O, Hagiwara Y, Hong TJ, Lih OS, Acharya UR. Deep learning for healthcare applications based on physiological signals: a review. Comput Methods Programs Biomed 2018;161:1–13. https://doi.org/10.1016/j.cmpb.2018.04.005.
- [20] He P, Wilson G, Russell C, Gerschutz M. Removal of ocular artifacts from the EEG: a comparison between time-domain regression method and adaptive filtering method using simulated data. Med Biol Eng Comput 2007;45:495–503. https://doi.org/10.1007/s11517-007-0179-9.
- [21] Urigüen JA, Garcia-Zapirain B. EEG artifact removal—stateof-the-art and guidelines. J Neural Eng 2015;12:31001.
- [22] Minguillon J, Lopez-Gordo MA, Pelayo F. Trends in EEG-BCI for daily-life: requirements for artifact removal. Biomed Signal Process Control 2017;31:407–18. https://doi.org/10.1016/j.bspc.2016.09.005.
- [23] Bashashati A, Nouredin B, Ward RK, Lawrence P, Birch GE. Effect of eye-blinks on a self-paced brain interface design. Clin Neurophysiol 2007;118:1639–47. https://doi.org/10.1016/j.clinph.2007.03.020.
- [24] Gaur P, Gupta H, Chowdhury A, McCreadie K, Pachori RB, Wang H. A sliding window common spatial pattern for enhancing motor imagery classification in EEG-BCI. IEEE Trans Instrum Meas 2021;70. https://doi.org/10.1109/TIM.2021.3051996.
- [25] Wang J, Zhang Q, Zhang Y, Xu G. Automatic artifacts removal from epileptic EEG using a hybrid algorithm. J Vibroengineering 2013;15:477–87.
- [26] Kamran MA, Mannan MMN, Jeong MY. Cortical signal analysis and advances in functional near-infrared spectroscopy signal: a review. Front Hum Neurosci 2016;10:261. https://doi.org/10.3389/fnhum.2016.00261.
- [27] Mahajan R, Morshed BI. Unsupervised eye blink artifact denoising of EEG data with modified multiscale sample entropy, kurtosis, and wavelet-ICA. IEEE J Biomed Heal Informatics 2015;19:158–65. https://doi.org/10.1109/JBHI.2014.2333010.
- [28] Liu J, Ramakrishnan S, Laxminarayan S, Neal M, Cashmere DJ, Germain A, et al. Effects of signal artefacts on electroencephalography spectral power during sleep: quantifying the effectiveness of automated artefact-rejection algorithms. J Sleep Res 2018;27:98–102. https://doi.org/10.1111/jsr.12576.
- [29] Urigüen JA, García B. Electroencephalogram artifact removal-validation. J Med Imaging Heal Informatics 2017;7:174–80. https://doi.org/10.1166/jmihi.2017.2002.
- [30] Daly I, Pichiorri F, Faller J, Kaiser V, Kreilinger A, Scherer R, et al. What does clean EEG look like? In: Proc Annu. Int. Conf. IEEE Eng. Med. Biol. Soc. EMBS. IEEE; 2012. p. 3963–6. https://doi.org/10.1109/EMBC.2012.6346834.
- [31] Mannan MMN, Kamran MA, Jeong MY. Identification and removal of physiological artifacts from electroencephalogram signals: a review. IEEE Access 2018;6:30630–52. https://doi.org/10.1109/ACCESS.2018.2842082.
- [32] Dora C, Biswal PK. Engineering approaches for ECG artefact removal from EEG: a review. Int J Biomed Eng Technol 2020;32:351–83. https://doi.org/10.1504/IJBET.2020.107203.
- [33] Jiang X, Bin BG, Tian Z. Removal of artifacts from EEG signals: a review. Sensors (Switzerland) 2019;19. https://doi.org/10.3390/s19050987.
- [34] LeVan P, Urrestarazu E, Gotman J. A system for automatic artifact removal in ictal scalp EEG based on independent component analysis and Bayesian classification. Clin Neurophysiol 2006;117:912–27. https://doi.org/10.1016/j.clinph.2005.12.013.
- [35] Erez Y, Tischler H, Moran A, Bar-Gad I. Generalized framework for stimulus artifact removal. J Neurosci Methods 2010;191:45–59. https://doi.org/10.1016/j.jneumeth.2010.06.005.
- [36] Chari KS, Ranjan R, Baig MNA, Naresh A. Mobile controlled multipurpose rescue robot using DTMF technology. 2017 Int. Conf. Intell. Comput. Instrum. Control Technol. ICICICT 2017, vol. 2018- Janua, IEEE; 2018, p. 1284–9. 10.1109/ICICICT1.2017.8342754.
- [37] Mognon A, Jovicich J, Bruzzone L, Buiatti M. ADJUST: An automatic EEG artifact detector based on the joint use of spatial and temporal features. Psychophysiology 2011;48:229–40. https://doi.org/10.1111/j.1469-8986.2010.01061.x.
- [38] Croft RJ, Chandler JS, Barry RJ, Cooper NR, Clarke AR. EOG correction: a comparison of four methods. Psychophysiology 2005;42:16–24. https://doi.org/10.1111/j.1468-8986.2005.00264.x.
- [39] Wichmann T. A digital averaging method for removal of stimulus artifacts in neurophysiologic experiments. J Neurosci Methods 2000;98:57–62. https://doi.org/10.1016/S0165-0270(00)00190-4.
- [40] Kenemans JL, Molenaar PCM, Verbaten MN, Slangen JL. Removal of the ocular artifact from the EEG: a comparison of time and frequency domain methods with simulated and real data. Psychophysiology 1991;28:114–21. https://doi.org/10.1111/j.1469-8986.1991.tb03397.x.
- [41] Kaya I. A Brief Summary of EEG Artifact Handling. ArXiv 2020. 10.13140/RG.2.2.25108.04484.
- [42] van den Berg-Lenssen MMC, van Gisbergen JAM, Jervis BW. Comparison of two methods for correcting ocular artefacts in EEGs. Med Biol Eng Comput 1994;32:501–11. https://doi.org/10.1007/BF02515308.
- [43] Sweeney KT, Ward TE, McLoone SF. Artifact removal in physiological signals-practices and possibilities. IEEE TransInf Technol Biomed 2012;16:488–500. https://doi.org/10.1109/TITB.2012.2188536.
- [44] Romero S, Mañanas MA, Barbanoj MJ. A comparative study of automatic techniques for ocular artifact reduction in spontaneous EEG signals based on clinical target variables: a simulation case. Comput Biol Med 2008;38:348–60. https://doi.org/10.1016/j.compbiomed.2007.12.001.
- [45] Romero S, Mañanas MA, Barbanoj MJ. Ocular reduction in EEG signals based on adaptive filtering, regression and blind source separation. Ann Biomed Eng 2009;37:176–91. https://doi.org/10.1007/s10439-008-9589-6.
- [46] Bisht A, Kaur C, Singh P. Recent advances in artifact removal techniques for EEG signal processing. Adv. Intell. Syst. Comput., vol. 989, Springer; 2020, p. 385–92. 10.1007/978-981-13-8618-3_41.
- [47] Peng H, Hu B, Shi Q, Ratcliffe M, Zhao Q, Qi Y, et al. Removal of ocular artifacts in EEG - an improved approach combining DWT and ANC for portable applications. IEEE J Biomed Heal Informatics 2013;17:600–7. https://doi.org/10.1109/JBHI.2013.2253614.
- [48] Mijović B, De Vos M, Gligorijević I, Taelman J, Van Huffel S. Source separation from single-channel recordings by combining empirical-mode decomposition and independent component analysis. IEEE Trans Biomed Eng 2010;57:2188–96. https://doi.org/10.1109/TBME.2010.2051440.
- [49] Euginia L. A wavelet based de-noising technique for ocular artifact correction of the electroencephalogram. 8th Korea-Russia Int. Symp. Sci. Technol. - Proc. KORUS 2004, vol. 3, IEEE; 2005, p. 355–7. 10.1109/korus.2004.1555784.
- [50] Gajbhiye P, Tripathy RK, Pachori RB. Elimination of ocular artifacts from single channel EEG signals using FBSE-EWT based rhythms. IEEE Sens J 2020;20:3687–96. https://doi.org/10.1109/JSEN.2019.2959697.
- [51] Castellanos NP, Makarov VA. Recovering EEG brain signals: artifact suppression with wavelet enhanced independent component analysis. J Neurosci Methods 2006;158:300–12. https://doi.org/10.1016/j.jneumeth.2006.05.033.
- [52] Zhou Y, Ling BWK, Mo X, Guo Y, Tian Z. Empirical mode decomposition-based hierarchical multiresolution analysis for suppressing noise. IEEE Trans Instrum Meas 2020;69:1833–45. https://doi.org/10.1109/TIM.2019.2914734.
- [53] Kamal Al-Qazzaz N, Hamid Bin Mohd Ali S, Anom Ahmad S, Shabiul Islam M, Escudero J. Automatic artifact removal in EEG of normal and demented individuals using ICA-WT during working memory tasks. Sensors (Switzerland) 2017;17:1326. 10.3390/s17061326.
- [54] Zhang S, McIntosh J, Shadli SM, Neo PSH, Huang Z, McNaughton N. Removing eye blink artefacts from EEG—A single-channel physiology-based method. J Neurosci Methods 2017;291:213–20. https://doi.org/10.1016/j.jneumeth.2017.08.031.
- [55] Plöchl M, Ossandón JP, König P. Combining EEG and eye tracking: identification, characterization, and correction of eye movement artifacts in electroencephalographic data. Front Hum Neurosci 2012;6:278. https://doi.org/10.3389/fnhum.2012.00278.
- [56] Pinegger A, Wriessnegger SC, Faller J, Mïller-Putz GR. Evaluation of different EEG acquisition systems concerning their suitability for building a brain-computer interface: case studies. Front Neurosci 2016;10:441. https://doi.org/ 10.3389/fnins.2016.00441.
- [57] Saini M, Payal, Satija U. An effective and robust framework for ocular artifact removal from single-channel EEG signal based on variational mode decomposition. IEEE Sens J 2020;20:369–76. https://doi.org/10.1109/JSEN.2019.2942153.
- [58] Gu Y, Li X, Chen S, Li X. AOAR: an automatic ocular artifact removal approach for multi-channel electroencephalogram data based on non-negative matrix factorization and empirical mode decomposition. J Neural Eng 2021;18. https://doi.org/10.1088/1741-2552/abede0 056012.
- [59] Çınar S, Acır N. A novel system for automatic removal of ocular artefacts in EEG by using outlier detection methods and independent component analysis. Expert Syst Appl 2017;68:36–44. https://doi.org/10.1016/j.eswa.2016.10.009.
- [60] Issa MF, Juhasz Z. Improved EOG artifact removal using wavelet enhanced independent component analysis. Brain Sci 2019;9. https://doi.org/10.3390/brainsci9120355.
- [61] Khadem A, Hossein-Zadeh GA. Quantification of the effects of volume conduction on the EEG/MEG connectivity estimates: an index of sensitivity to brain interactions. Physiol Meas 2014;35:2149–64. https://doi.org/10.1088/0967-3334/35/10/2149.
- [62] Falsaperla R, Marino SD, Aguglia MG, Cupitò G, Pisani F, Mailo J, et al. Developmental EEG hallmark or biological artifact? Glossokinetic artifact mimicking anterior slow dysrhythmia in two full term newborns. Neurophysiol Clin 2019;49:377–80. https://doi.org/10.1016/j.neucli.2019.07.015.
- [63] Hernandez-Reif M, Diego M, Field T. Instrumental and vocal music effects on EEG and EKG in neonates of depressed and non-depressed mothers. Infant Behav Dev 2006;29:518–25. https://doi.org/10.1016/j.infbeh.2006.07.008.
- [64] Lai M, Demuru M, Hillebrand A, Fraschini M. A comparison between scalp- and source-reconstructed EEG networks. Sci Rep 2018;8:1–8. https://doi.org/10.1038/s41598-018-30869-w.
- [65] Lynn Berard G. IEEE Xplore. Online (Wilton, Connect 2010;34:26–8. 10.1109/mp.2006.1692290.
- [66] MEDLINE_: Description of the Database n.d. https://www.nlm.nih.gov/bsd/medline.html (accessed May 19, 2021).
- [67] US National Library of Medicine - National Institutes of Health. Home - PMC - NCBI. WwwNcbiNlmNihGov 2017. https://www.ncbi.nlm.nih.gov/pmc/ (accessed May 19, 2021).
- [68] Gaur P, McCreadie K, Pachori RB, Wang H, Prasad G. An automatic subject specific channel selection method for enhancing motor imagery classification in EEG-BCI using correlation. Biomed Signal Process Control 2021;68 102574.
- [69] Bhattacharyya A, Tripathy RK, Garg L, Pachori RB. A Novel Multivariate-multiscale approach for computing EEG spectral and temporal complexity for human emotion recognition. IEEE Sens J 2021;21:3579–91. https://doi.org/10.1109/JSEN.2020.3027181.
- [70] Wallstrom GL, Kass RE, Miller A, Cohn JF, Fox NA. Automatic correction of ocular artifacts in the EEG: a comparison of regression-based and component-based methods. Int J Psychophysiol 2004;53:105–19. https://doi.org/10.1016/j.ijpsycho.2004.03.007.
- [71] Hoffmann S, Falkenstein M. The correction of eye blink artefacts in the EEG: a comparison of two prominent methods. PLoS ONE 2008;3. https://doi.org/10.1371/journal. pone.0003004 e3004.
- [72] Hillyard SA, Galambos R. Eye movement artifact in the CNV. Electroencephalogr Clin Neurophysiol 1970;28:173–82. https://doi.org/10.1016/0013-4694(70)90185-9.
- [73] Whitton JL, Lue F, Moldofsky H. A spectral method for removing eye movement artifacts from the EEG. Electroencephalogr Clin Neurophysiol 1978;44:735–41. https://doi.org/10.1016/0013-4694(78)90208-0.
- [74] Wallstrom GL, Kass RE, Miller A, Cohn JF, Fox NA. Correction of ocular artifacts in the EEG using Bayesian adaptive regression splines. In: Gatsonis C, Kass RE, Carriquiry A, Gelman A, Higdon D, Pauler DK, editors. Case Studies {Bayesian} {Statistics}. New York, NY: Springer; 2002. p. 351–65. https://doi.org/10.1007/978-1-4612-2078-7_19.
- [75] Gasser T, Ziegler P, Gattaz WF. The deleterious effect of ocular artefacts on the quantitative EEG, and a remedy. Eur Arch Psychiatry Clin Neurosci 1992;241:352–6. https://doi. org/10.1007/BF02191960.
- [76] Croft RJ, Barry RJ. EOG correction: a new perspective. Electroencephalogr Clin Neurophysiol 1998;107:387–94.
- [77] Meier T, Rosburg T, Arnold M, Kreitschmann-Andermahr I, Sauer H, Nowak H, et al. Quantification and rejection of ocular artifacts in auditory evoked- fields in schizophrenics. Electroencephalogr Clin Neurophysiol - Evoked Potentials 1998;108:526–35. https://doi.org/10.1016/S0168-5597(98)00031-8.
- [78] Jervis BW, Thomlinson M, Mair C. Residual ocular artefact subsequent to ocular artefact removal from the electroencephalogram. IEE Proc Sci Meas Technol 1999;146:293–8. https://doi.org/10.1049/ip-smt:19990703.
- [79] Croft RJ, Barry RJ. EOG correction: Which regression should we use? Psychophysiology 2000;37:123–5. https://doi.org/10.1017/S0048577200001633.
- [80] Croft RJ, Barry RJ. EOG correction of blinks with saccade coefficients: a test and revision of the aligned-artefact average solution. Clin Neurophysiol 2000;111:444–51. https://doi.org/10.1016/S1388-2457(99)00296-5.
- [81] Croft RJ, Barry RJ. Issues relating to the subtraction phase in EOG artefact correction of the EEG. Int J Psychophysiol 2002;44:187–95. https://doi.org/10.1016/S0167-8760(01)00201-X.
- [82] Schlögl A, Keinrath C, Zimmermann D, Scherer R, Leeb R, Pfurtscheller G. A fully automated correction method of EOG artifacts in EEG recordings. Clin Neurophysiol 2007;118:98–104. https://doi.org/10.1016/j.clinph.2006.09.003.
- [83] Wu W, Wu QMJ, Sun W, Yang Y, Yuan X, Zheng WL, et al. A regression method with subnetwork neurons for vigilance estimation using EOG and EEG. IEEE Trans Cogn Dev Syst 2018. https://doi.org/10.1109/TCDS.2018.2889223.
- [84] Mannan MMN, Kamran MA, Kang S, Jeong MY. Effect of EOG Signal Filtering on the Removal of Ocular Artifacts and EEG-Based Brain-Computer Interface: A Comprehensive Study 2018. 10.1155/2018/4853741.
- [85] Garg HK, Kohli AK. Excision of ocular artifacts from EEG using NVFF-RLS adaptive algorithm. Circuits, Syst Signal Process 2017;36:404–19. https://doi.org/10.1007/s00034-016-0293-8.
- [86] Kher R, Gandhi R. Adaptive filtering based artifact removal from electroencephalogram (EEG) signals. Int. Conf. Commun. Signal Process. ICCSP 2016, IEEE; 2016, p. 561–4. 10.1109/ICCSP.2016.7754202.
- [87] Filligoi GC, Capitanio L, Babiloni F, Fattorini L, Urbano A, Cerutti S. Reduction of ocular artefacts in source current density brain mappings by ARX2 filtering. Med Eng Phys 1995;17:282–90. https://doi.org/10.1016/1350-4533(95)90853-4.
- [88] Rao KD, Reddy DC. On-line method for enhancement of electroencephalogram signals in presence of electrooculogram artefacts using nonlinear recursive least squares technique. Med Biol Eng Comput 1995;33:488–91. https://doi.org/10.1007/BF02510535.
- [89] Sadasivan PK, Narayana DD. ANC schemes for the enhancement of EEG signals in the presence of EOG artifacts. Comput Biomed Res 1996;29:27–40. https://doi.org/10.1006/cbmr.1996.0003.
- [90] Sadasivan PK, Dutt DN. Development of Newton-type adaptive algorithm for minimization of EOG artefacts from noisy EEG signals. Signal Process 1997;62:173–86. https://doi.org/10.1016/s0165-1684(97)00123-0.
- [91] Selvan S, Srinivasan R. Removal of ocular artifacts from EEG using an efficient neural network based adaptive filtering technique. IEEE Signal Process Lett 1999;6:330–2. https://doi.org/10.1109/97.803438.
- [92] Moretti DV, Babiloni F, Carducci F, Cincotti F, Remondini E, Rossini PM, et al. Computerized processing of EEG-EOG-EMG artifacts for multi-centric studies in EEG oscillations and event-related potentials. Int J Psychophysiol 2003;47:199–216. https://doi.org/10.1016/S0167-8760(02)00153-8.
- [93] Jervis BW, Garcia MIB, Thomlinson M, Lopez JML. Online removal of ocular artefacts from the electroencephalogram. IEE Proc Sci Meas Technol 2004;151:47–51. https://doi.org/10.1049/ip-smt:20030757.
- [94] He P, Wilson G, Russell C. Removal of ocular artifacts from electro-encephalogram by adaptive filtering. Med Biol Eng Comput 2004;42:407–12. https://doi.org/10.1007/BF02344717.
- [95] Puthusserypady S, Ratnarajah T. H1 adaptive filters for eye blink artifact minimization from electroencephalogram. IEEE Signal Process Lett 2005;12:816–9. https://doi.org/10.1109/LSP.2005.859526.
- [96] Erfanian A, Mahmoudi B. Real-time ocular artifact suppression using recurrent neural network for electroencephalogram based brain-computer interface. Med Biol Eng Comput 2005;43:296–305. https://doi.org/10.1007/BF02345969.
- [97] Puthusserypady S, Ratnarajah T. Robust adaptive techniques for minimization of EOG artefacts from EEG signals. Signal Process 2006;86:2351–63. https://doi.org/10.1016/j.sigpro.2005.10.018.
- [98] Kierkels JJM, Riani J, Bergmans JWM, Van Boxtel GJM. Using an eye tracker for accurate eye movement artifact correction. IEEE Trans Biomed Eng 2007;54:1256–67. https://doi.org/10.1109/TBME.2006.889179.
- [99] Noureddin B, Lawrence PD, Birch GE. Online removal of eye movement and blink EEG artifacts using a high-speed eye tracker. IEEE Trans Biomed Eng 2012;59:2103–10. https://doi.org/10.1109/TBME.2011.2108295.
- [100] Boudet S, Peyrodie L, Forzy G, Pinti A, Toumi H, Gallois P. Improvements of adaptive filtering by optimal projection to filter different artifact types on long duration EEG recordings. Comput Methods Programs Biomed 2012;108:234–49. https://doi.org/10.1016/j.cmpb.2012.04.005.
- [101] Kilicarslan A, Grossman RG, Contreras-Vidal JL. A robust adaptive denoising framework for real-time artifact removal in scalp EEG measurements. J Neural Eng 2016;13:26013.https://doi.org/10.1088/1741-2560/13/2/026013.
- [102] Li D, Zhang H, Khan MS, Mi F. A self-adaptive frequency selection common spatial pattern and least squares twin support vector machine for motor imagery electroencephalography recognition. Biomed Signal Process Control 2018;41:222–32. https://doi.org/10.1016/j.bspc.2017.11.014.
- [103] Somers B, Francart T, Bertrand A. A generic EEG artifact removal algorithm based on the multi-channel Wiener filter. J Neural Eng 2018;15:36007. https://doi.org/10.1088/1741-2552/aaac92.
- [104] Liu CC, Ghosh Hajra S, Fickling S, Pawlowski G, Song X, D’Arcy RCN. Novel signal processing technique for capture and isolation of blink-related oscillations using a low-density electrode array for bedside evaluation of consciousness. IEEE Trans Biomed Eng 2019;67:453–63. https://doi.org/10.1109/TBME.2019.2915185.
- [105] Bera A, Das N, Chakraborty M. Optimal Filtering of Single Channel EEG Data using Linear Filters. 2020 6th Int. Conf. Bio Signals, Images, Instrumentation, ICBSII 2020, Institute of Electrical and Electronics Engineers Inc.; 2020. 10.1109/ICBSII49132.2020.9167574.
- [106] Somers B, Bertrand A. Removal of eye blink artifacts in wireless EEG sensor networks using reduced-bandwidth canonical correlation analysis. J Neural Eng 2016;13:66008. https://doi.org/10.1088/1741-2560/13/6/066008.
- [107] Jang YI, Sim JY, Yang JR, Kwon NK. The optimal selection of mother wavelet function and decomposition level for denoising of dcg signal. Sensors 2021;21:1–17. https://doi.org/10.3390/s21051851.
- [108] Al-Qazzaz NK, Mohd Ali SH Bin, Ahmad SA, Islam MS, Escudero J. Selection of mother wavelet functions for multichannel EEG signal analysis during a working memory task. Sensors (Switzerland) 2015;15:29015–35. 10.3390/s151129015.
- [109] Gajbhiye P, Tripathy RK, Bhattacharyya A, Pachori RB. Novel approaches for the removal of motion artifact from EEG recordings. IEEE Sens J 2019;19:10600–8. https://doi.org/10.1109/JSEN.2019.2931727.
- [110] Gajbhiye P, Mingchinda N, Chen W, Mukhopadhyay SC, Wilaiprasitporn T, Tripathy RK. Wavelet domain optimized Savitzky-Golay filter for the removal of motion artifacts from EEG recordings. IEEE Trans Instrum Meas 2021;70. https://doi.org/10.1109/TIM.2020.3041099.
- [111] Dora C, Biswal PK. An improved algorithm for efficient ocular artifact suppression from frontal EEG electrodes using VMD. Biocybern Biomed Eng 2020;40:148–61. https://doi.org/10.1016/j.bbe.2019.03.002.
- [112] Wang L, Xue W, Li Y, Luo M, Huang J, Cui W, et al. Automatic epileptic seizure detection in EEG signals using multi-domain feature extraction and nonlinear analysis. Entropy 2017;19:1–17. https://doi.org/10.3390/e19060222.
- [113] Molla MKI, Rabiul Islam M, Tanaka T, Rutkowski TM. Artifact suppression from EEG signals using data adaptive time domain filtering. Neurocomputing 2012;97:297–308. https://doi.org/10.1016/j.neucom.2012.05.009.
- [114] Paradeshi KP, Kolekar UD. Removal of ocular artifacts from multichannel EEG signal using wavelet enhanced ICA. In: 2017 Int Conf. Energy, Commun. Data Anal. Soft Comput. ICECDS 2017. p. 383–7. 10.1109/ICECDS.2017.8390150.
- [115] Gorji H, Koohpayezadeh A, Haddadnia J. Ocular artifact detection and removing from EEG by wavelet families: a comparative study. J Inf 2013;3:39–48.
- [116] Burger C, Van Den Heever DJ. Removal of EOG artefacts by combining wavelet neural network and independent component analysis. Biomed Signal Process Control 2015;15:67–79. https://doi.org/10.1016/j.bspc.2014.09.009.
- [117] Krishnaveni V, Jayaraman S, Anitha L, Ramadoss K. Removal of ocular artifacts from EEG using adaptive thresholding of wavelet coefficients. J Neural Eng 2006;3:338. https://doi.org/10.1088/1741-2560/3/4/011.
- [118] Iyer D, Zouridakis G. Single-trial evoked potential estimation: comparison between independent component analysis and wavelet denoising. Clin Neurophysiol 2007;118:495–504. https://doi.org/10.1016/j.clinph.2006.10.024.
- [119] Ahn Y, Jun Y. Measurement of pain-like response to various NICU stimulants for high-risk infants. vol. 83. 2007. 10.1016/j.earlhumdev.2006.05.022.
- [120] Sayed Daud SNS, Sudirman R. Artifact removal and brain rhythm decomposition for eeg signal using wavelet approach. J Teknol 2016;78:135–43. https://doi.org/10.11113/jt.v78.9460.
- [121] Khatun S, Mahajan R, Morshed BI. Comparative study of wavelet-based unsupervised ocular artifact removal techniques for single-channel EEG Data. IEEE J Transl Eng Heal Med 2016;4:1–8. https://doi.org/10.1109/JTEHM.2016.2544298.
- [122] Chavez M, Grosselin F, Bussalb A, De Vico Fallani F, Navarro-Sune X. Surrogate-based artifact removal from single-channel EEG. IEEE Trans Neural Syst Rehabil Eng 2018;26:540–50. https://doi.org/10.1109/TNSRE.2018.2794184.
- [123] Acharyya A, Jadhav PN, Bono V, Maharatna K, Naik GR. Low-complexity hardware design methodology for reliable and automated removal of ocular and muscular artifact from EEG. Comput Methods Programs Biomed 2018;158:123–33. https://doi.org/10.1016/j.cmpb.2018.02.009.
- [124] Malan NS, Sharma S. Removal of Ocular Atrifacts from Single Channel EEG Signal Using DTCWT with Quantum Inspired Adaptive Threshold. Proc. 2018 2nd Int. Conf. Biomed. Eng. Smart Technol. Better Soc. IBIOMED 2018, 2018, p. 94–9. 10.1109/IBIOMED.2018.8534915.
- [125] Srinanthini RK, Srinivasan P, Arun S. Spectral analysis of EEG data for ocular artifact removal using wavelet transform technique. In: 2019 Int. Conf. Recent Adv. Energy-Efficient Comput. Commun. ICRAECC 2019. p. 1–4. 10.1109/ICRAECC43874.2019.8995021.
- [126] Vigário RN. Extraction of ocular artefacts from EEG using independent component analysis. Electroencephalogr Clin Neurophysiol 1997;103:395–404. https://doi.org/10.1016/S0013-4694(97)00042-8.
- [127] Romo Vázquez R, Vélez-Pérez H, Ranta R, Louis Dorr V, Maquin D, Maillard L. Blind source separation, wavelet denoising and discriminant analysis for EEG artefacts and noise cancelling. Biomed Signal Process Control 2012;7:389–400. https://doi.org/10.1016/j.bspc.2011.06.005.
- [128] James CJ, Hesse CW. Independent component analysis for biomedical signals. Physiol Meas 2005;26:R15. https://doi.org/10.1088/0967-3334/26/1/R02.
- [129] Islam MK, Rastegarnia A, Yang Z. Methods for artifact detection and removal from scalp EEG: a review. Neurophysiol Clin 2016;46:287–305. https://doi.org/10.1016/j.neucli.2016.07.002.
- [130] Casarotto S, Bianchi AM, Cerutti S, Chiarenza GA. Principal component analysis for reduction of ocular artefacts in event-related potentials of normal and dyslexic children. Clin Neurophysiol 2004;115:609–19. https://doi.org/10.1016/j.clinph.2003.10.018.
- [131] Berg P, Scherg M. Dipole modelling of eye activity and its application to the removal of eye artefacts from the eeg and meg. Clin Phys Physiol Meas 1991;12:49–54. https://doi.org/10.1088/0143-0815/12/A/010.
- [132] Lagerlund TD, Sharbrough FW, Busacker NE. Spatial filtering of multichannel electroencephalographic recordings through principal component analysis by singular value decomposition. J Clin Neurophysiol 1997;14:73–82. https://doi.org/10.1097/00004691-199701000-00007.
- [133] Liu T, Yao D. Removal of the ocular artifacts from EEG data using a cascaded spatio-temporal processing. Comput Methods Programs Biomed 2006;83:95–103. https://doi.org/10.1016/j.cmpb.2006.03.009.
- [134] Teixeira AR, Tomé AM, Lang EW, Gruber P, Martins da Silva A. Automatic removal of high-amplitude artefacts from single-channel electroencephalograms. Comput Methods Programs Biomed 2006;83:125–38. https://doi.org/10.1016/j.cmpb.2006.06.003.
- [135] Quinn M, Mathan S, Pavel M. Removal of ocular artifacts from EEG using learned templates. Lect. Notes Comput. Sci. (including Subser. Lect. Notes Artif. Intell. Lect. Notes Bioinformatics), vol. 8027 LNAI, Springer; 2013, p. 371–80. 10.1007/978-3-642-39454-6_39.
- [136] Blum S, Jacobsen NSJ, Bleichner MG, Debener S. A riemannian modification of artifact subspace reconstruction for EEG artifact handling. Front Hum Neurosci 2019;13:141. https://doi.org/10.3389/fnhum.2019.00141.
- [137] Davies ME, James CJ. Source separation using single channel ICA. Signal Process 2007;87:1819–32. https://doi.org/10.1016/j.sigpro.2007.01.011.
- [138] Shen M, Zhang X, Li X. Independent component analysis of electroencephalographic signals. Int. Conf. Signal Process. Proceedings, ICSP, vol. 2, 2002, p. 1548–51. 10.1109/ICOSP.2002.1180091.
- [139] Makeig S, Jung T-P, Bell AJ, Sejnowski TJ. Independent Component Analysis of Electroencephalographic Data. n.d.
- [140] Jung TP, Humphries C, Lee TW, Makeig S, Mckeown MJ, Iragui V, et al. Extended ICA removes artifacts from electroencephalographic recordings. Adv Neural Inf Process Syst 1998:894–900.
- [141] Jung TP, Makeig S,Westerfield M, Townsend J, Courchesne E, Sejnowski TJ. Removal of eye activity artifacts from visual event-related potentials in normal and clinical subjects. Clin Neurophysiol 2000;111:1745–58. https://doi.org/10.1016/S1388-2457(00)00386-2.
- [142] Hyvärinen A, Oja E. Independent component analysis: algorithms and applications. Neural Networks 2000;13:411–30. https://doi.org/10.1016/S0893-6080(00)00026-5.
- [143] Jung TP, Makeig S, Humphries C, Lee TW, Mckeown MJ, Iragui V, et al. Removing electroencephalographic artifacts by blind source separation. Psychophysiology 2000;37:163–78. https://doi.org/10.1017/S0048577200980259.
- [144] Delorme A, Sejnowski T, Makeig S. Enhanced detection of artifacts in EEG data using higher-order statistics and independent component analysis. Neuroimage 2007;34:1443–9. https://doi.org/10.1016/j.neuroimage.2006.11.004.
- [145] Nam H, Yim T-G, Han SK, Oh J-B, Lee SK. Independent component analysis of Ictal EEG in medial temporal lobe epilepsy. Epilepsia 2002;43:160–4. https://doi.org/10.1046/j.1528-1157.2002.23501.x.
- [146] Iriarte J, Urrestarazu E, Valencia M, Alegre M, Malanda A, Viteri C, et al. Independent component analysis as a tool to eliminate artifacts in EEG: a quantitative study. J Clin Neurophysiol 2003;20:249–57. https://doi.org/10.1097/00004691-200307000-00004.
- [147] Delorme A, Makeig S. EEGLAB: An open source toolbox for analysis of single-trial EEG dynamics including independent component analysis. J Neurosci Methods 2004;134:9–21. https://doi.org/10.1016/j.jneumeth.2003.10.009.
- [148] Urrestarazu E, Iriarte J, Alegre M, Valencia M, Viteri C, Artieda J. Independent component analysis removing artifacts in ictal recordings. Epilepsia 2004;45:1071–8. https://doi.org/10.1111/j.0013-9580.2004.12104.x.
- [149] Joyce CA, Gorodnitsky IF, Kutas M. Automatic removal of eye movement and blink artifacts from EEG data using blind component separation. Psychophysiology 2004;41:313–25. https://doi.org/10.1111/j.1469-8986.2003.00141.x.
- [150] Tran Y, Craig A, Boord P, Craig D. Using independent component analysis to remove artifact from electroencephalographic measured during stuttered speech. Med Biol Eng Comput 2004;42:627–33. https://doi.org/10.1007/BF02347544.
- [151] Flexer A, Bauer H, Pripfl J, Dorffner G. Using ICA for removal of ocular artifacts in EEG recorded from blind subjects. Neural Networks 2005;18:998–1005. https://doi.org/10.1016/j.neunet.2005.03.012.
- [152] Li Y, Ma Z, Lu W, Li Y. Automatic removal of the eye blink artifact from EEG using an ICA-based template matching approach. Physiol Meas 2006;27:425–36. https://doi.org/10.1088/0967-3334/27/4/008.
- [153] Ting KH, Fung PCW, Chang CQ, Chan FHY. Automatic correction of artifact from single-trial event-related potentials by blind source separation using second order statistics only. Med Eng Phys 2006;28:780–94. https://doi.org/10.1016/j.medengphy.2005.11.006.
- [154] Frank RM, Frishkoff GA. Automated protocol for evaluation of electromagnetic component separation (APECS): application of a framework for evaluating statistical methods of blink extraction from multichannel EEG. Clin Neurophysiol 2007;118:80–97. https://doi.org/10.1016/j.clinph.2006.07.317.
- [155] Mammone N, Morabito FC. Enhanced automatic artifact detection based on independent component analysis and Renyi’s entropy. Neural Networks 2008;21:1029–40. https://doi.org/10.1016/j.neunet.2007.09.020.
- [156] Campos Viola F, Thorne J, Edmonds B, Schneider T, Eichele T, Debener S. Semi-automatic identification of independent components representing EEG artifact. Clin Neurophysiol 2009;120:868–77. https://doi.org/10.1016/j.clinph.2009.01.015.
- [157] Zhou W, Gotman J. Automatic removal of eye movement artifacts from the EEG using ICA and the dipole model. Prog Nat Sci 2009;19:1165–70. https://doi.org/10.1016/j.pnsc.2008.11.013.
- [158] Gao JF, Yang Y, Lin P, Wang P, Zheng CX. Automatic removal of eye-movement and blink artifacts from eeg signals. Brain Topogr 2010;23:105–14. https://doi.org/10.1007/s10548-009-0131-4.
- [159] Winkler I, Haufe S, Tangermann M. Automatic classification of artifactual ICA-components for artifact removal in EEG signals. Behav Brain Funct 2011;7:30. https://doi.org/10.1186/1744-9081-7-30.
- [160] Kong W, Zhou Z, Hu S, Zhang J, Babiloni F, Dai G. Automatic and direct identification of blink components from scalp EEG. Sensors (Switzerland) 2013;13:10783–801. https://doi.org/10.3390/s130810783.
- [161] Winkler I, Brandl S, Horn F, Waldburger E, Allefeld C, Tangermann M. Robust artifactual independent component classification for BCI practitioners. J Neural Eng 2014;11. https://doi.org/10.1088/1741-2560/11/3/035013 035013.
- [162] Frølich L, Andersen TS, Mørup M. Classification of independent components of EEG into multiple artifact classes. Psychophysiology 2015;52:32–45. https://doi.org/10.1111/psyp.12290.
- [163] Chaumon M, Bishop DVM, Busch NA. A practical guide to the selection of independent components of the electroencephalogram for artifact correction. J Neurosci Methods 2015;250:47–63. https://doi.org/10.1016/j.jneumeth.2015.02.025.
- [164] Zou Y, Nathan V, Jafari R. Automatic identification of artifact-Related independent components for artifact removal in EEG recordings. IEEE J Biomed Heal Informatics 2016;20:73–81. https://doi.org/10.1109/JBHI.2014.2370646.
- [165] Hou J, Morgan K, Tucker DM, Konyn A, Poulsen C, Tanaka Y, et al. An improved artifacts removal method for high dimensional EEG. J Neurosci Methods 2016;268:31–42. https://doi.org/10.1016/j.jneumeth.2016.05.003.
- [166] Chen X, Liu A, Chen Q, Liu Y, Zou L, McKeown MJ. Simultaneous ocular and muscle artifact removal from EEG data by exploiting diverse statistics. Comput Biol Med 2017;88:1–10. https://doi.org/10.1016/j.compbiomed.2017.06.013.
- [167] Drisdelle BL, Aubin S, Jolicoeur P. Dealing with ocular artifacts on lateralized ERPs in studies of visual-spatial attention and memory: ICA correction versus epoch rejection. Psychophysiology 2017;54:83–99. https://doi.org/10.1111/psyp.12675.
- [168] Pontifex MB, Miskovic V, Laszlo S. Evaluating the efficacy of fully automated approaches for the selection of eyeblink ICA components. Psychophysiology 2017;54:780–91. https://doi.org/10.1111/psyp.12827.
- [169] Szentkirályi A, Wong KKH, Grunstein RR, D’Rozario AL, Kim JW. Performance of an automated algorithm to process artefacts for quantitative EEG analysis during a simultaneous driving simulator performance task. Int JPsychophysiol 2017;121:12–7. https://doi.org/10.1016/j.ijpsycho.2017.08.004.
- [170] Barthélemy Q, Mayaud L, Renard Y, Kim D, Kang SW, Gunkelman J, et al. Online denoising of eye-blinks in electroencephalography. Neurophysiol Clin 2017;47:371–91. https://doi.org/10.1016/j.neucli.2017.10.059.
- [171] Ries AJ, Slayback D, Touryan J. The fixation-related lambda response: Effects of saccade magnitude, spatial frequency, and ocular artifact removal. Int J Psychophysiol 2018;134:1–8. https://doi.org/10.1016/j.ijpsycho.2018.09.004.
- [172] Gebodh N, Esmaeilpour Z, Adair D, Chelette K, Dmochowski J, Woods AJ, et al. Inherent physiological artifacts in EEG during tDCS. Neuroimage 2019;185:408–24. https://doi.org/10.1016/j.neuroimage.2018.10.025.
- [173] Lin CT, Huang CS, Yang WY, Singh AK, Chuang CH, Wang YK. Real-time EEG signal enhancement using canonical correlation analysis and gaussian mixture clustering. J Healthc Eng 2018;2018. https://doi.org/10.1155/2018/5081258.
- [174] Gao J, Yang Y, Sun J, Yu G. Automatic removal of various artifacts from EEG signals using combined methods. J Clin Neurophysiol 2010;27:312–20. https://doi.org/10.1097/WNP.0b013e3181f534f4.
- [175] Zhang L, Wang Y, He C. Online removal of eye blink artifact from scalp eeg using canonical correlation analysis based method. J Mech Med Biol 2012;12. https://doi.org/10.1142/S0219519412500911.
- [176] Xie J, Qiu T, Wen-Hong L. An ocular artifacts removal method based on canonical correlation analysis and two-channel EEG recordings. IFMBE Proc., vol. 39 IFMBE, Springer; 2013, p. 465–8. 10.1007/978-3-642-29305-4_123.
- [177] Singh B. Morphological Component Analysis for Biological Signals: A Sophisticated Way to Analyze Brain Activities in Various Movable Conditions. Cyber-Physical Syst. Soc. Appl., IGI Global; 2019, p. 318–39.
- [178] Yong X, Ward RK, Birch GE. Artifact removal in EEG using morphological component analysis. In: ICASSP, IEEE Int Conf. Acoust. Speech Signal Process. - Proc.. IEEE; 2009. p. 345–8. 10.1109/icassp.2009.4959591.
- [179] Singh B, Wagatsuma H. A Removal of eye movement and blink artifacts from EEG data using morphological component analysis. Comput Math Methods Med 2017;2017:1–17. 10.1155/2017/1861645.
- [180] Yong X, Ward RK, Birch GE. Generalized morphological component analysis for EEG source separation and artifact removal. 2009 4th Int. IEEE/EMBS Conf. Neural Eng. NER ’09, IEEE; 2009, p. 343–6. 10.1109/NER.2009.5109303.
- [181] Matiko JW, Beeby S, Tudor J. Real time eye blink noise removal from EEG signals using morphological component analysis. In: Proc. Annu. Int. Conf. IEEE Eng. Med. Biol. Soc. EMBS. IEEE; 2013. p. 13–6. 10.1109/EMBC.2013.6609425.
- [182] Singh B, Wagatsuma H. Two-stage wavelet shrinkage and EEG-EOG signal contamination model to realize quantitative validations for the artifact removal from multiresource biosignals. Biomed Signal Process Control 2019;47:96–114. https://doi.org/10.1016/j.bspc.2018.08.014.
- [183] Zhang DX, Wu XP, Guo XJ. The EEG signal preprocessing based on empirical mode decomposition. 2nd Int. Conf. Bioinforma. Biomed. Eng. iCBBE 2008, IEEE; 2008, p. 2131–4. 10.1109/ICBBE.2008.862.
- [184] Rakibul Mowla M, Ng SC, Zilany MSA, Paramesran R. Artifacts-matched blind source separation and wavelet transform for multichannel EEG denoising. Biomed Signal Process Control 2015;22:111–8. https://doi.org/10.1016/j.bspc.2015.06.009.
- [185] Molla MKI, Tanaka T, Rutkowski TM. Multivariate EMD based approach to EOG artifacts separation from EEG. In: ICASSP, IEEE Int Conf. Acoust. Speech Signal Process. - Proc.. IEEE; 2012. p. 653–6. 10.1109/ICASSP.2012.6287968.
- [186] Yücelbaş C, Yücelbaş Ş, Özşen S, Tezel G, Kktürk S, Yosunkaya Ş. Automatic detection of sleep spindles with the use of STFT, EMD and DWT methods. Neural Comput Appl 2018;29:17–33. https://doi.org/10.1007/s00521-016-2445-y.
- [187] Gao C, Ma L, Li H. An ICA/HHT hybrid approach for automatic ocular artifact correction. Int J Pattern Recognit Artif Intell 2015;29:1558001. https://doi.org/10.1142/S021800141558001X.
- [188] Shahbakhti M, Khalili V, Kamaee G. Removal of blink from EEG by Empirical Mode Decomposition (EMD). 5th 2012 Biomed. Eng. Int. Conf. BMEiCON 2012, IEEE; 2012, p. 1–5. 10.1109/BMEiCon.2012.6465451.
- [189] Murthy KGN, Khan ZA. Correction of ocular artifacts in EEG signal using empirical mode decomposition and crosscorrelation. Res J Biotechnol 2014;9:21–6.
- [190] Patel R, Sengottuvel S, Janawadkar MP, Gireesan K, Radhakrishnan TS, Mariyappa N. Ocular artifact suppression from EEG using ensemble empirical mode decomposition with principal component analysis. Comput Electr Eng 2016;54:78–86. https://doi.org/10.1016/j.compeleceng.2015.08.019.
- [191] Guarascio M, Puthusserypady S. Automatic minimization of ocular artifacts from electroencephalogram: a novel approach by combining Complete EEMD with Adaptive Noise and Renyi’s Entropy. Biomed Signal Process Control 2017;36:63–75. https://doi.org/10.1016/j.bspc.2017.03.017.
- [192] Fairley J, Georgoulas G, Stylios C, Rye D. A hybrid approach for artifact detection in EEG data. Lect. Notes Comput. Sci. (including Subser. Lect. Notes Artif. Intell. Lect. Notes Bioinformatics), vol. 6352 LNCS, Springer; 2010, p. 436–41. 10.1007/978-3-642-15819-3_59.
- [193] Lin J, Zhang A. Fault feature separation using wavelet-ICA filter. NDT E Int 2005;38:421–7. https://doi.org/10.1016/j.ndteint.2004.11.005.
- [194] Ghandeharion H, Erfanian A. A fully automatic ocular artifact suppression from EEG data using higher order statistics: Improved performance by wavelet analysis. Med Eng Phys 2010;32:720–9. https://doi.org/10.1016/j.medengphy.2010.04.010.
- [195] Mammone N, La Foresta F, Morabito FC. Automatic artifact rejection from multichannel scalp EEG by wavelet ICA. IEEE Sens J 2012;12:533–42. https://doi.org/10.1109/JSEN.2011.2115236.
- [196] Li M, Yan Cui JY. Automatic removal of ocular artifact from EEG with DWT and ICA method. Appl Math Inf Sci 2013;7:809–16.
- [197] Mammone N, Morabito FC. Enhanced automatic wavelet independent component analysis for electroencephalographic artifact removal. Entropy 2014;16:6553–72. https://doi.org/10.3390/e16126553.
- [198] Kevric J, Subasi A. Comparison of signal decomposition methods in classification of EEG signals for motor-imagery BCI system. Biomed Signal Process Control 2017;31:398–406. https://doi.org/10.1016/j.bspc.2016.09.007.
- [199] Mingai L, Shuoda G, Guoyu Z, Yanjun S, Jinfu Y. Removing ocular artifacts from mixed EEG signals with FastKICA and DWT. J Intell Fuzzy Syst 2015;28:2851–61. https://doi.org/10.3233/IFS-151564.
- [200] Daly I, Scherer R, Billinger M, Müller-Putz G. FORCe: Fully online and automated artifact removal for brain-computer interfacing. IEEE Trans Neural Syst Rehabil Eng 2015;23:725–36. https://doi.org/10.1109/TNSRE.2014.2346621.
- [201] Kevric J, Subasi A. The Impact of Mspca Signal De-Noising In Real-Time Wireless Brain Computer Interface System. Southeast Eur J Soft Comput 2015;4. 10.21533/scjournal.v4i1.90.
- [202] Bono V, Das S, Jamal W, Maharatna K. Hybrid wavelet and EMD/ICA approach for artifact suppression in pervasive EEG. ArXiv 2018;267:89–107.
- [203] Kanoga S, Nakanishi M, Mitsukura Y. Assessing the effects of voluntary and involuntary eyeblinks in independent components of electroencephalogram. Neurocomputing 2016;193:20–32. https://doi.org/10.1016/j.neucom.2016.01.057.
- [204] Dursun M, Özşen S, Yücelbaş C, Yücelbaş Ş, Tezel G, Kktürk S, et al. A new approach to eliminating EOG artifacts from the sleep EEG signals for the automatic sleep stage classification. Neural Comput Appl 2017;28:3095–112. https://doi.org/10.1007/s00521-016-2578-z.
- [205] Mammone N. Preprocessing the EEG of Alzheimer’s patients to automatically remove artifacts. Smart Innov. Syst. Technol., vol. 69, Springer; 2017, p. 279–87. 10.1007/978-3-319-56904-8_27.
- [206] Abidi A, Nouira I, Bedoui MH. Parallel Implementation on GPU for EEG Artifact Rejection by Combining FastICA and TQWT. Proc. IEEE/ACS Int. Conf. Comput. Syst. Appl. AICCSA, vol. 2018- Novem, 2019, p. 1–8. 10.1109/AICCSA.2018.8612838.
- [207] Jamil Z, Jamil A, Majid M. Artifact removal from EEG signals recorded in non-restricted environment. Biocybern Biomed Eng 2021;41:503–15. https://doi.org/10.1016/j.bbe.2021.03.009.
- [208] Lindsen JP, Bhattacharya J. Correction of blink artifacts using independent component analysis and empirical mode decomposition. Psychophysiology 2010;47:955–60. https://doi.org/10.1111/j.1469-8986.2010.00995.x.
- [209] Sweeney KT, McLoone SF, Ward TE. The use of ensemble empirical mode decomposition with canonical correlation analysis as a novel artifact removal technique. IEEE Trans Biomed Eng 2013;60:97–105. https://doi.org/10.1109/TBME.2012.2225427.
- [210] Soomro MH, Badruddin N, Yusoff MZ, Jatoi MA. Automatic eye-blink artifact removal method based on EMD-CCA. 2013 ICME Int. Conf. Complex Med. Eng. C. 2013, IEEE; 2013, p. 186–90. 10.1109/ICCME.2013.6548236.
- [211] Zeng K, Chen D, Ouyang G, Wang L, Liu X, Li X. An EEMD-ICA Approach to Enhancing Artifact Rejection for Noisy Multivariate Neural Data. IEEE Trans Neural Syst Rehabil Eng 2016;24:630–8. https://doi.org/10.1109/TNSRE.2015.2496334.
- [212] Wang G, Teng C, Li K, Zhang Z, Yan X. The Removal of EOG artifacts from EEG signals using independent component analysis and multivariate empirical mode decomposition. IEEE J Biomed Heal Informatics 2016;20:1301–8. https://doi.org/10.1109/JBHI.2015.2450196.
- [213] Bai Y, Wan X, Zeng K, Ni Y, Qiu L, Li X. Reduction hybrid artifacts of EMG-EOG in electroencephalography evoked by prefrontal transcranial magnetic stimulation. J Neural Eng 2016;13. https://doi.org/10.1088/1741-2560/13/6/066016066016.
- [214] Yang B, Zhang T, Zhang Y, Liu W, Wang J, Duan K. Removal of electrooculogram artifacts from electroencephalogram using canonical correlation analysis with ensemble empirical mode decomposition. Cognit Comput 2017;9:626–33. https://doi.org/10.1007/s12559-017-9478-0.
- [215] Santillan-Guzman A, Oliveros-Oliveros JJ, Morin-Castillo MM. Introducing a Combination of ICA-EMD to Suppress Muscle and Ocular Artifacts in EEG Signals. Proc. Annu. Int. Conf. IEEE Eng. Med. Biol. Soc. EMBS, vol. 2018- July, Honolulu, HI: IEEE; 2018, p. 1250–3. 10.1109/EMBC.2018.8512581.
- [216] Egambaram A, Badruddin N, Asirvadam VS, Begum T, Fauvet E, Stolz C. FastEMD–CCA algorithm for unsupervised and fast removal of eyeblink artifacts from electroencephalogram. Biomed Signal Process Control 2020;57. https://doi.org/10.1016/j.bspc.2019.101692 101692.
- [217] Chan HL, Tsai YT, Meng LF, Wu T. The removal of ocular artifacts from EEG signals using adaptive filters based on ocular source components. Ann Biomed Eng 2010;38:3489–99. https://doi.org/10.1007/s10439-010-0087-2.
- [218] Klados MA, Papadelis C, Braun C, Bamidis PD. REG-ICA: A hybrid methodology combining Blind Source Separation and regression techniques for the rejection of ocular artifacts. Biomed Signal Process Control 2011;6:291–300. https://doi.org/10.1016/j.bspc.2011.02.001.
- [219] Wang Z, Xu P, Liu T, Tian Y, Lei X, Yao D. Robust removal of ocular artifacts by combining Independent Component Analysis and system identification. Biomed Signal Process Control 2014;10:250–9. https://doi.org/10.1016/j.bspc.2013.10.006.
- [220] Mannan MMN, Jeong MY, Kamran MA. Hybrid ICA—regression: automatic identification and removal of ocular artifacts from electroencephalographic signals. Front Hum Neurosci 2016;10:193. https://doi.org/10.3389/fnhum.2016.00193.
- [221] Mannan MMN, Kim S, Jeong MY, Kamran MA. Hybrid EEG–eye tracker: automatic identification and removal of eye movement and blink artifacts from electroencephalographic signal. Sensors (Basel) 2016;16:241. https://doi.org/10.3390/s16020241.
- [222] Jafarifarmand A, Badamchizadeh MA, Khanmohammadi S, Nazari MA, Tazehkand BM. Real-time ocular artifacts removal of EEG data using a hybrid ICA-ANC approach. Biomed Signal Process Control 2017;31:199–210. https://doi.org/10.1016/j.bspc.2016.08.006.
- [223] Shoker L, Sanei S, Chambers J. Artifact removal from electroencephalograms using a hybrid BSS-SVM algorithm. IEEE Signal Process Lett 2005;12:721–4. https://doi.org/10.1109/LSP.2005.855539.
- [224] Halder S, Bensch M, Mellinger J, Bogdan M, Kübler A, Birbaumer N, et al. Online artifact removal for brain-computer interfaces using support vector machines and blind source separation. Comput Intell Neurosci 2007;2007. https://doi.org/10.1155/2007/82069.
- [225] Schetinin V, Maple C. A Bayesian model averaging methodology for detecting EEG artifacts. 2007 15th Int. Conf. Digit. Signal Process. DSP 2007, IEEE; 2007, p. 499–502. 10.1109/ICDSP.2007.4288628.
- [226] Nicolaou N, Nasuto SJ. Automatic artefact removal from event-related potentials via clustering. J VLSI Signal Process Syst Signal Image Video Technol 2007;48:173–83. https://doi. org/10.1007/s11265-006-0011-z.
- [227] Kezi Selva Vijila C, Kanagasabapathy P, Johnson S, Ewards V. Artifacts removal in EEG signal using adaptive neuro fuzzy inference system. Proc. ICSCN 2007 Int. Conf. Signal Process. Commun. Netw., IEEE; 2007, p. 589–91. 10.1109/ICSCN.2007.350676.
- [228] Shao SY, Shen KQ, Ong CJ, Li XP, Wilder-Smith EPV. Automatic identification and removal of artifacts in EEG using a probabilistic multi-class SVM approach with error correction. In: Conf. Proc. - IEEE Int. Conf. Syst. Man. Cybern. IEEE; 2008. p. 1134–9. 10.1109/ICSMC.2008.4811434.
- [229] Patidar U, Zouridakis G. A hybrid algorithm for artifact rejection in EEG recordings based on iterative ICA and fuzzy clustering. In: Proc. 30th Annu. Int. Conf. IEEE Eng. Med. Biol. Soc. EMBS’08 - ‘‘Personalized Healthc. through Technol.. IEEE; 2008. p. 50–3. 10.1109/iembs.2008.4649088.
- [230] Shao SY, Shen KQ, Ong CJ, Wilder-Smith EPV, Li XP. Automatic EEG artifact removal: a weighted support vector machine approach with error correction. IEEE Trans Biomed Eng 2009;56:336–44. https://doi.org/10.1109/TBME.2008.2005969.
- [231] Tangermann M, Winkler I, Haufe S, Blankertz B. Classification of artifactual ICA components. Mach Learn 2009;11:110–4.
- [232] Sovierzoski MA, Schwarz L, De Azevedo FM. Binary neural classifier of raw EEG data to separate spike and sharp wave of the eye blink artifact. 5th Int. Conf. Nat. Comput. ICNC 2009, vol. 2, IEEE; 2009, p. 126–30. 10.1109/ICNC.2009.672.
- [233] Wu J, Zhang J, Yao L. An automated detection and correction method of EOG artifacts in EEG-based BCI. 2009 ICME Int. Conf. Complex Med. Eng. C. 2009, IEEE; 2009, p. 1–5. 10.1109/ICCME.2009.4906624.
- [234] Gao J, Lin P, Yang Y, Wang P, Zheng C. Real-time removal of ocular artifacts from EEG based on independent component analysis and manifold learning. Neural Comput Appl 2010;19:1217–26. https://doi.org/10.1007/s00521-010-0370-z.
- [235] Qi LJ, Alias N. Comparison of ANN and SVM for classification of eye movements in EOG signals. J Phys Conf Ser 2018;971:62. https://doi.org/10.1088/1742-6596/971/1/012012.
- [236] Poli R, Cinel C, Citi L, Salvaris M. A genetic programming approach to detecting artifact-generating eye movements from EEG in the absence of electro-oculogram. 2011 5th Int. IEEE/EMBS Conf. Neural Eng. NER 2011, IEEE; 2011, p. 416–21. 10.1109/NER.2011.5910575.
- [237] Lawhern V, Hairston WD, McDowell K, Westerfield M, Robbins K. Detection and classification of subject-generated artifacts in EEG signals using autoregressive models. J Neurosci Methods 2012;208:181–9. https://doi.org/10.1016/j.jneumeth.2012.05.017.
- [238] Zou Y, Hart J, Jafari R. Automatic EEG artifact removal based on ICA and hierarchical clustering. In: ICASSP, IEEE Int. Conf. Acoust. Speech Signal Process. - Proc.. p. 649–52. 10.1109/ICASSP.2012.6287967.
- [239] Pourzare S, Aydemir O, Kayikcioglu T. Classification of various facial movement artifacts in EEG signals. 2012 35th Int. Conf. Telecommun. Signal Process. TSP 2012 - Proc., IEEE; 2012, p. 529–33. 10.1109/TSP.2012.6256351.
- [240] Nguyen HAT, Musson J, Li F, Wang W, Zhang G, Xu R, et al. EOG artifact removal using a wavelet neural network. Neurocomputing 2012;97:374–89. https://doi.org/10.1016/j.neucom.2012.04.016.
- [241] Radüntz T, Scouten J, Hochmuth O, Meffert B. Automated EEG artifact elimination by applying machine learning algorithms to ICA-based features. J Neural Eng 2017;14:46004. https://doi.org/10.1088/1741-2552/aa69d1.
- [242] Tamburro G, Fiedler P, Stone D, Haueisen J, Comani S. A new ICA-based fingerprint method for the automatic removal of physiological artifacts from EEG recordings. PeerJ 2018;2018. https://doi.org/10.7717/peerj.4380 e4380.
- [243] Yang B, Duan K, Fan C, Hu C, Wang J. Automatic ocular artifacts removal in EEG using deep learning. Biomed Signal Process Control 2018;43:148–58. https://doi.org/10.1016/j.bspc.2018.02.021.
- [244] Phadikar S, Sinha N, Ghosh R. Automatic EEG eyeblink artefact identification and removal technique using independent component analysis in combination with support vector machines and denoising autoencoder. IET Signal Process 2020;14:396–405. https://doi.org/10.1049/ietspr.2020.0025.
- [245] Cao J, Chen L, Hu D, Dong F, Jiang T, Gao W, et al. Unsupervised eye blink artifact detection from EEG with Gaussian mixture model. IEEE J Biomed Heal Informatics 2021.
- [246] Zeng H, Song A, Yan R, Qin H. EOG artifact correction from EEG recording using stationary subspace analysis and empirical mode decomposition. Sensors (Switzerland) 2013;13:14839–59. https://doi.org/10.3390/s131114839.
- [247] Jafarifarmand A, Badamchizadeh MA. Artifacts removal in EEG signal using a new neural network enhanced adaptive filter. Neurocomputing 2013;103:222–31. https://doi.org/10.1016/j.neucom.2012.09.024.
- [248] Zeng H, Song A. Removal of EOG artifacts from EEG recordings using stationary subspace analysis. Sci World J 2014;2014. https://doi.org/10.1155/2014/259121.
- [249] Yang BH, He LF, Lin L, Wang Q. Fast removal of ocular artifacts from electroencephalogram signals using spatial constraint independent component analysis based recursive least squares in brain-computer interface. Front Inf Technol Electron Eng 2015;16:486–96. https://doi.org/10.1631/FITEE.1400299.
- [250] Maddirala AK, Shaik RA. Removal of EOG artifacts from single channel EEG signals using combined singular spectrum analysis and adaptive noise canceler. IEEE Sens J 2016;16:8279–87. https://doi.org/10.1109/JSEN.2016.2560219.
- [251] Hsu SH, Mullen TR, Jung TP, Cauwenberghs G. Real-time adaptive EEG source separation using online recursive independent component analysis. IEEE Trans Neural Syst Rehabil Eng 2016;24:309–19. https://doi.org/10.1109/TNSRE.2015.2508759.
- [252] Patel R, Gireesan K, Sengottuvel S, Janawadkar MP, Radhakrishnan TS. Common methodology for cardiac and ocular artifact suppression from EEG recordings by combining ensemble empirical mode decomposition with regression approach. J Med Biol Eng 2017;37:201–8. https://doi.org/10.1007/s40846-016-0208-y.
- [253] Quazi MH, Kahalekar SG. Artifacts removal from EEG signal: FLM optimization-based learning algorithm for neural network-enhanced adaptive filtering. Biocybern Biomed Eng 2017;37:401–11. https://doi.org/10.1016/j.bbe.2017.04.003.
- [254] Guarnieri R, Marino M, Barban F, Ganzetti M, Mantini D. Online EEG artifact removal for BCI applications by adaptive spatial filtering. J Neural Eng 2018;15:56009. https://doi.org/10.1088/1741-2552/aacfdf.
- [255] Sai CY, Mokhtar N, Arof H, Cumming P, Iwahashi M. Automated classification and removal of EEG artifacts with SVM and wavelet-ICA. IEEE J Biomed Heal Informatics 2018;22:664–70. https://doi.org/10.1109/JBHI.2017.2723420.
- [256] Nguyen HAT, Do AT, Le TH, Bui TD. A deep sparse autoencoder method for automatic EOG artifact removal. Int. Conf. Control. Autom. Syst., vol. 2019- Octob, 2019, p. 346–51. 10.23919/ICCAS47443.2019.8971645.
- [257] Cheng J, Li L, Li C, Liu Y, Liu A, Qian R, et al. Remove diverse artifacts simultaneously from a single-channel EEG based on ssa and ica: a semi-simulated study. IEEE Access 2019;7:60276–89. https://doi.org/10.1109/ACCESS.2019.2915564.
- [258] Phadikar S, Sinha N, Ghosh R. Automatic eye blink artifact removal from EEG signal using wavelet transform with heuristically optimized threshold. IEEE J Biomed Heal Informatics 2020:1. https://doi.org/10.1109/jbhi.2020.2995235.
- [259] Prasad DS, Chanamallu SR, Prasad KS. Mitigation of ocular artifacts for EEG signal using improved earth worm optimization-based neural network and lifting wavelet transform. Comput Methods Biomech Biomed Engin 2020:1–28.
- [260] Ahmed MA, Deyu Q, Alshemmary EN. Electroencephalogram signal eye blink rejection improvement based on the hybrid stone blind origin separation and particle swarm optimization technique. IEEE Access 2020;8:105671–80. https://doi.org/10.1109/ACCESS.2020.2999562.
- [261] Paradeshi KP, Kolekar UD. Ocular artifact suppression in multichannel EEG using dynamic segmentation and enhanced wICA. IETE J Res 2020. https://doi.org/10.1080/03772063.2020.1725657.
- [262] Noorbasha SK, Sudha GF. Removal of EOG artifacts from single channel EEG – An efficient model combining overlap segmented ASSA and ANC. Biomed Signal Process Control 2020;60. https://doi.org/10.1016/j.bspc.2020.101987 101987.
- [263] Wu Q, Zhang WQ, Wang Y, Zhang W, Liu X. Research on removal algorithm of EOG artifacts in single-channel EEG signals based on CEEMDAN-BD. Comput Methods Biomech Biomed Engin 2021. https://doi.org/10.1080/10255842.2021.1889525.
- [264] Maddirala AK, Shaik RA. Separation of sources from single-channel EEG signals using independent component analysis. IEEE Trans Instrum Meas 2018;67:382–93. https://doi.org/10.1109/TIM.2017.2775358.
- [265] Ghosh R, Sinha N, Biswas SK. Automated eye blink artefact removal from EEG using support vector machine and autoencoder. IET Signal Process 2019;13:141–8. https://doi.org/10.1049/iet-spr.2018.5111.
- [266] Li P, Chen Z, Hu Y. A method for automatic removal of EOG artifacts from EEG based on ICA-EMD. Proc. - 2017 Chinese Autom. Congr. CAC 2017, vol. 2017- Janua, 2017, p. 1860–3. 10.1109/CAC.2017.8243071.
- [267] Zhao Q, Hu B, Shi Y, Li Y, Moore P, Sun M, et al. Automatic identification and removal of ocular artifacts in EEG - Improved adaptive predictor filtering for portable applications. IEEE Trans Nanobioscience 2014;13:109–17. https://doi.org/10.1109/TNB.2014.2316811.
- [268] Abdullah AK, Zhang CZ, Abdullah AAA, Lian S. Automatic extraction system for common artifacts in EEG signals based on evolutionary stone’s BSS algorithm. Math Probl Eng 2014;2014. https://doi.org/10.1155/2014/324750.
- [269] Lee SB, Kim H, Kim YT, Zeiler FA, Smielewski P, Czosnyka M, et al. Artifact removal from neurophysiological signals: impact on intracranial and arterial pressure monitoring in traumatic brain injury. J Neurosurg 2020;132:1952–60. https://doi.org/10.3171/2019.2.JNS182260.
- [270] de la O Serna JA, Paternina MRA, Zamora-Méndez A, Tripathy RK, Pachori RB. EEG-rhythm specific Taylor–Fourier filter bank implemented with O-splines for the detection of epilepsy using EEG signals. IEEE Sens J 2020;20:6542–51.
- [271] Pachori RB, Sharma R, Patidar S. Classification of normal and epileptic seizure EEG signals based on empirical mode decomposition. Stud Fuzziness Soft Comput 2015;319:367–88. https://doi.org/10.1007/978-3-319-12883-2_13.
- [272] Siddharth T, Gajbhiye P, Tripathy RK, Pachori RB. EEG-based detection of focal seizure area using FBSE-EWT rhythm and SAE-SVM network. IEEE Sens J 2020;20:11421–8. https://doi.org/10.1109/JSEN.2020.2995749.
- [273] Gupta V, Pachori RB. FBDM based time-frequency representation for sleep stages classification using EEG signals. Biomed Signal Process Control 2021;64. https://doi.org/10.1016/j.bspc.2020.102265 102265.
- [274] Mehla VK, Singhal A, Singh P, Pachori RB. An efficient method for identification of epileptic seizures from EEG signals using Fourier analysis. Phys Eng Sci Med 2021;1:3. https://doi.org/10.1007/s13246-021-00995-3.
- [275] Das K, Pachori RB. Schizophrenia detection technique using multivariate iterative filtering and multichannel EEG signals. Biomed Signal Process Control 2021;67. https://doi. org/10.1016/j.bspc.2021.102525 102525.
- [276] Sharma R, Pachori RB, Sircar P. Automated emotion recognition based on higher order statistics and deep learning algorithm. Biomed Signal Process Control 2020;58. https://doi.org/10.1016/j.bspc.2020.101867 101867.
- [277] Zhang L, Wang Y, He C. Online removal of eye blink artifact from scalp eeg using canonical correlation analysis based method. J Mech Med Biol 2012;12:1250091. https://doi.org/10.1142/S0219519412500911.
- [278] Kosmyna N, Sarawgi U, Morris C, Maes P. Attentivu: A biofeedback system for real-time monitoring and improvement of engagement. Conf. Hum. Factors Comput. Syst. - Proc., Association for Computing Machinery, 2019. 10.1145/3290607.3311768.
- [279] Al-Nafjan A, Hosny M, Al-Ohali Y, Al-Wabil A. Review and classification of emotion recognition based on EEG brain-computer interface system research: a systematic review. Appl Sci 2017;7. https://doi.org/10.3390/app7121239.
- [280] Peng Y, Wang Z, Wong CM, Nan W, Rosa A, Xu P, et al. Changes of EEG phase synchronization and EOG signals along the use of steady state visually evoked potential-based brain computer interface. J Neural Eng 2020;17. https://doi.org/10.1088/1741-2552/ab933e.
- [281] Suchetha M, Kumaravel N. Empirical mode decomposition based filtering techniques for power line interference reduction in electrocardiogram using various adaptive structures and subtraction methods. Biomed Signal Process Control 2013;8:575–85. https://doi.org/10.1016/j.bspc.2013.05.001.
Uwagi
Opracowanie rekordu ze środków MNiSW, umowa Nr 461252 w ramach programu "Społeczna odpowiedzialność nauki" - moduł: Popularyzacja nauki i promocja sportu (2021).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-78042116-c0c3-48fe-a07f-d019c605fc57