PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Green corrosion inhibitors. A review

Identyfikatory
Warianty tytułu
PL
Przegląd ekologicznych inhibitorów korozji
Języki publikacji
EN
Abstrakty
EN
Corrosion is a significant issue in wide range of fields, including but not limited to: oil and gas industry, water and land transportation, and sewage systems. Destruction of materials exposed to environment is closely related to corrosion. Pipelines and other metal elements exposed to freshwater, seawater, sewage, soil or harsh environmental conditions are especially susceptible to corrosion. Repairing damage caused by corrosion process costs billions of dollars a year. One of the main corrosion prevention methods is to use corrosion inhibitors. Chemical agents and biocides used as corrosion inhibitors are often highly toxic and pose a serious threat to human health and natural environment. Eco-friendly, low cost, and non-toxic alternative is to use natural, green corrosion inhibitors, such as fruits, fruits waste, seeds or leaves extracts, chitosan etc. These natural substances are a reach source of antioxidants, flavonoids, alkaloids, carbohydrates and biocides. Studies show that the use of natural extracts is highly cost-effective and practical technique in the fight against corrosion. Commercial use of green corrosion inhibitors could contribute to substantial savings in infrastructure maintenance costs. This study aims to exemplify natural surfactants that could be used as non-toxic, cheap and effective corrosion inhibitors.
PL
Niszczenie materiałów wystawianych na działanie warunków środowiskowych jest ściśle związane z procesem korozji. Jedną z głównych metod zapobiegania temu procesowi jest stosowanie inhibitorów. Wiele powszechnie używanych substancji charakteryzuje duża toksyczność dla człowieka oraz dla środowiska. Dobrą alternatywą dla takich środków są naturalne inhibitory korozji ekstrahowane z różnych części roślin. Badania dowodzą, że naturalne ekstrakty roślinne skutecznie hamują korozję, a niektóre wykazują także właściwości biobójcze, pomocne w walce z biokorozją. Celem pracy jest przedstawienie naturalnych ekstraktów, które mogą zostać wykorzystane w zapobieganiu korozji.
Rocznik
Strony
19--24
Opis fizyczny
Bibliogr. 86 poz., fig.
Twórcy
  • Pedagogical University of Cracow, Faculty of Geography and Biology, Institute of Biology, Cracow
  • Pedagogical University of Cracow, Faculty of Geography and Biology, Institute of Biology, Cracow
Bibliografia
  • [1] Schweitzer P. A., P. E.: Fundamentals of corrosion – Mechanisms, Causes and Preventative Methods. CRC Press, Boca Raton (2010) 25.
  • [2] Koch G., Varney J., Thompson N., Moghissi O., Gould M., Payer J.: International Measures of Prevention, Application, and Economics of Corrosion Technologies Study. NACE International, Huston (2016).
  • [3] Liwarska-Bizukojc E., Miksch K., Malachowska-Jutsz A., Kalka J.: Acute toxicity and genotoxicity of five selected anionic and nonionic surfactants. Chemosphere 58 (2005) 1249÷1253.
  • [4] Rosen M. J., Li F., Morrall S. W., Versteeg D. J.: The relationship between the interfacial properties of surfactants and their toxicity to aquatic organisms. Environ. Sci. Technol. 35 (2001) 954÷959.
  • [5] Hao X., Lei J. L., Li N. B., Luo H. Q.: An electrochemical sensor for sodium dodecyl sulfate detection based on anion exchange using eosin Y/polyethyleneimine modified electrode. Anal. Chim. Acta 852 (2014) 63÷68.
  • [6] Chong A. L., Mardel J. I., MacFarlane D. R., Forsyth M.: Synergistic corrosion inhibition of mild steel in aqueous chloride solutions by an imidazolinium carboxylate salt. ACS Sustainable Chem. Eng. 4 (2016) 1746÷1755.
  • [7] Umoren S., Obot I. B., Gasem Z., Odewunmi N. A.: Experimental and theoretical studies of red apple fruit extract as green corrosion inhibitor for mild steel in HCl solution. J. Dispers. Sci. Technol. 36 (2015) 789÷802.
  • [8] Umoren S. A.: Biomaterials for corrosion protection: evaluation of mustard seed extract as eco-friendly corrosion inhibitor for X60 steel in acid media. J. Adhes. Sci. Technol. 30 (2016) 1858÷1879.
  • [9] Odewunmi N. A., Umoren S. A., Gasem Z. M., Ganiyu S. A., Muhammad Q.: Lcitrulline: an active corrosion inhibitor component of watermelon rind extract for mild steel in HCl medium. J. Taiwan Ins. Chem. Eng. 51 (2015) 177÷185.
  • [10] Odewunmi N. A., Umoren S. A., Gasem Z. M.: Watermelon waste products as green corrosion inhibitors for mild steel in HCl solution. J. Environ. Chem. En. 3 (2015) 286÷296.
  • [11] Narenkumar J., Parthipan P., Usha Raja Nanthini A., Benelli G., Murugan K., Rajasekar A.: Ginger extract as green biocide to control microbial corrosion of mild steel. Biotechnology 7 (2017) 133.
  • [12] Punniyakotti P., Jayaraman N., Punniyakotti E., Parameswaran S. P., Ayyakkannu U. R. N., Akhil A., Aruliah R.: Neem extract as a green inhibitor for microbiologically influenced corrosion of carbon steel API 5LX in a hypersaline environments. J Mol Liq 240 (2017) 121÷127.
  • [13] Gupta N. K., Joshi P. G., Srivastava V., Quraishi M. A.: Chitosan: A macromolecule as green corrosion inhibitor for mild steel in sulfamic acid useful for sugar industry. Int. J. Biol. Macromol. 106 (2018) 704÷711.
  • [14] Koch G. H., Brongers M. P. H., Thompson N. G., Virmani Y. P., Payer J. H.: Corrosion Costs And Preventive Strategies in the United States. NACE International, Huston (2002).
  • [15] Umoren S. A., Eduok U. M.: Application of carbohydrate polymers as corrosion inhibitors for metal substrates in different media: A review. Carbohydr Polym 140 (2016) 314÷341.
  • [16] Duan J. C., Lu Q., Chen R. W., Duan Y. Q., Wang L. F., Gao L., Pan S. Y.: Synthesis of a novel flocculant on the basis of crosslinked Konjac glucomannangraft- polyacrylamide-co-sodium xanthate and its application in removal of Cu2+ ion. Carbohydr Polym 80 (2010) 436÷441.
  • [17] Zhang K., Yang Yin W., X., Chen Y., Liu Y., Le J., Xu B.: Amino acids modified konjac glucomannan as green corrosion inhibitors for mild steel in HCl solution. Carbohydr Polym 181 (2018) 191÷199.
  • [18] Fekry A. M., Mohamed R. R.: Acetyl thiourea chitosan as an eco-friendly inhibitor for mild steel in sulphuric acid medium. Electrochim. Acta 55 (2010) 1933÷1939.
  • [19] Hiano S., Inui H., Kosaki H., Uno Y., Toda T.: Chitin and chitosan: ecologically bioactive polymer. In: Gebelein CG, Carraher CE Jr (eds) Biotechnology and bioactive polymers. Plenum Press, New York (1994) 43.
  • [20] Hussein M. H. M., El-Hady M. F., Shehata H. A. H.,Hegazy M. A., Hefni H. H. H.: Preparation of some eco-friendly corrosion inhibitors having antibacterial activity from sea food waste. J Surfactants Deterg 16 (2013) 233÷242.
  • [21] Umoren S. A., AlAhmary A. A., Gasem Z. M., Solomon M. M.: Evaluation of chitosan and carboxymethyl cellulose as ecofriendly corrosion inhibitors for steel. Int. J. Biol. Macromol. 117 (2018) 1017÷1028.
  • [22] Umoren S. A., Banera M. J., Alonso-Garcia T., Gervasi C. A., Mirıfico M. V.: Inhibition of Mild Steel Corrosion in HCl Solution using Chitosan. Cellulose 20 (2013) 2529÷2545.
  • [23] Umoren S. A., Solomon M. M.: Effect of halide ions on the corrosion inhibition efficiency of different organic species – A review. J. Ind. Eng. Chem. 21 (2015) 81÷100.
  • [24] Umoren S. A., Solomon M. M.: Enhanced corrosion inhibition effect of polypropylene glycol in the presence of iodide ions at mild steel/sulphuric acid interface. J. Environ. Chem. Eng. 3 (2015) 1812÷1826.
  • [25] Sangeetha Y., Meenakshi S., Sairam Sundaram C.: Interactions at the mild steel acid solution interface in the presence of O-fumaryl-chitosan: Electrochemical and surface studies. Carbohydr. Polym. 136 (2016) 38÷45.
  • [26] Al-Tabakha M .M.: HPMC capsules: Current status and future prospects. J. Pharm. Pharm. Sci. 13 (2010) 428÷442.
  • [27] Byun Y., Ward A., Whiteside S.: Formation and characterization of shellac- hydroxypropyl methylcellulose composite films. Food Hydrocoll. 27 (2012) 364÷370.
  • [28] Brogly M., Fahs A., Bistac S.: Surface properties of new-cellulose based polymer coatings for oral drug delivery systems. Polym. Prepr. 52 (2011) 1054÷1055.
  • [29] Joshi S.C.: Sol-gel behavior of hydroxypropylmethylcellulose (HPMC) in ionic media including drug release. Materials 4 (2011) 1861÷1905.
  • [30] Zhou D., Law D., Reynolds J., Davis L., Smith C., Torres J. L., Dave V., Gopinathan N., Hernandez D. T., Springman M. K.: Understanding and managing the impact of HPMC variability on drug release from controlled release formulations. J. Pharm. Sci. 103 (2014) 1664÷1672.
  • [31] Bárcenas M. E., Rosell C. M.: Effect of HPMC addition on the microstructure, quality and aging of wheat bread. Food Hydrocoll. 19 (2005) 1037÷1043.
  • [32] Ehrich W., Höh H., Kreiner C.: Biocompatibility and pharmacokinetics of hydroxypropyl methylcellulose (HPMC) in the anterior chamber of the rabbit eye. Klin. Monatsblatter Augenheilkd. 196 (1990) 470÷474.
  • [33] Jiménez A., Fabra M., Talens P., Chiralt A.: Effect of lipid self-association on the microstructure and physical properties of hydroxypropyl-methylcellulose edible films containing fatty acids. Carbohydr. Polym. 82 (2010) 585÷593.
  • [34] Falguera V., Quintero J. P., Jiménez A., Muñoz J. A., Ibarz A.: Edible films and coatings: Structures, active functions and trends in their use. Trends Food Sci. Technol. 22 (2011) 292÷303.
  • [35] Arukalam I. O., Madufor I. C., Ogbobe O., Oguzie E. E.: Inhibition of mild steel corrosion in sulfuric acid medium by hydroxyethyl cellulose. Chem. Eng. Commun. 202 (2014) 112÷122.
  • [36] Arukalam I. O.: Durability and synergistic effects of ki on the acid corrosion inhibition of mild steel by hydroxypropyl methylcellulose. Carbohydr. Polym. 112 (2014) 291÷299.
  • [37] Thakur B. R., Singh R. K., Handa A. K.: Chemistry and uses of pectin—A review. Crit Rev Food Sci Nutr 37 (1997) 47÷73.
  • [38] Fares M. M., Maayta A. K., Al-Qudah M. M.: Pectin as promising greencorrosion inhibitor of aluminum in hydrochloric acid solution. Corros. Sci. 60 (2012) 112÷117.
  • [39] Geethanjali R., Sabirneeza A., Subhashini S.: Water-soluble andbiodegradable pectin-grafted polyacrylamide and pectin-grafted polyacrylicacid: Electrochemical investigation of corrosion-inhibition behaviour on mildsteel in 3.5% NaCl media. Indian J. Mater. Sci. 2014 (2014) Article ID 356075
  • [40] Umoren S. A., Obot I. B., Madhankumar A., Gasem Z. M.: Performance evaluation of pectin as ecofriendly corrosion inhibitorfor X60 pipeline steel in acid medium: Experimental and theoreticalapproaches. Carbohydr. Polym. 124 (2015) 280÷291.
  • [41] Klemm D., Heublein B., Fink H. P., Bohn A.: Cellulose: Fascinating Biopolymer and Sustainable Raw Material. Angew. Chem. Int. Ed. 44 (2005) 3358÷3393.
  • [42] WHO: Food additives and contaminants. Geneva, Switzerland: Food additivesseries. (1998) 40.
  • [43] Arukalam I. O.: The inhibitive effect of hydroxyethylcellulose on mild steelcorrosion in hydrochloric acid solution. ARInt. 2 (2012) 35÷42.
  • [44] EL-Haddad M. N.: Hydroxyethylcellulose used as an eco-friendly inhibitor for 1018c-steel corrosion in 3.5% NaCl solution. Carbohydr. Polym. 112 (2014) 595÷602.
  • [45] Capasso L.: 5300 years ago the Ice Man used natural laxatives and antibiotics. Lancet 352 (1998) 352 1864.
  • [46] Oguzie E. E., Onuchukwu A. I., Okafor P. C., Ebenso E. E.: Corrosion inhibition and adsorption behaviour of Ocimum basilicum extract on aluminum. Pigment Resin Tech. 35 (2006) 63÷70.
  • [47] Huang Y. X., Cai J., Zhou J. M.: Corrosion inhibition of magnolia leaf extracts in acid medium for A3 steel. Applied Chem Indust 39 (2010) 538÷540.
  • [48] Pan M. Z., Cai J., Yu M.: Corrosion inhibition of Gum leaves extracts in acid medium for A3 steel. Chem Eng 2 (2012) 70÷72.
  • [49] Khadraoui A., Khelifa A., Touafri L., Hamitouche H., Mehdaoui R.: Acid extract of Mentha pulegium as a potential inhibitor for corrosion of 2024 aluminum alloy in 1M HCl solution. J Mater Environ Sci. 4 (2013) 663÷670.
  • [50] Lim T. K.: Edible medicinal and non-medicinal plants volume 6, fruits. Springer, Netherlands (2012).
  • [51] Ashassi-Sorkhabia H., Shaabanib B., Seifzadeha D.: Effect of some pyrimidinic Schiff bases on the corrosion of mild steel in hydrochloric acid solution. Electrochim. Acta 50 (2005) 3446÷3452.
  • [52] Rahim A. A., Rocca E., Steinmetz J., Kassim M. J., Adnan R., Ibrahim M. S.: Mangrove tannins and their flavonoid monomers as alternative steel corrosion inhibitors in acidic medium. Corros. Sci. 49 (2007) 402÷417.
  • [53] Behpour M., Ghoreishi S. M., Khayatkashani M., Soltani N.: Green approach to corrosion inhibition of mild steel in two acidic solutions by the extract of Punica granatum peel and main constituents. Mater. Chem. Phys. 131 (2012) 621÷633.
  • [54] Obot I. B., Madhankumar A.: Enhanced corrosion inhibition effect of tannic acid in the presence of gallic acid at mild steel/HCl acid solution interface. J. Ind. Eng. Chem. 25 (2015) 105÷111.
  • [55] Liao L. L., Mo S., Luo H. Q., Li N. B.: Longan seed and peel as environmentally friendly corrosion inhibitor for mild steel in acid solution: Experimental and theoretical studies. J Colloid Interface Sci. 499 (2017) 110÷119.
  • [56] Kulkarni G. T., Gowthamarajan K., Rao B. G., Suresh B.: Evaluation of binding property of Plantago ovata and Trigonella Foenum gracecum mucilage. Indian Drugs 39 (2002) 422÷425.
  • [57] Washi S. P., Sharma V. D., Jain V. K., Sinha P.: Plantago ovata: genetic diversity, cultivation, utilization and chemistry. Indian J Nat Prod. 1 (1985) 3÷6.
  • [58] Madgulkar A. R., Rao M. R. P., Warrier D.: Characterization of Psyllium (Plantago ovata) Polysaccharide and Its Uses. Polysaccharides (2015) 871÷890.
  • [59] Mobin M., Rizvi M.: Polysaccharide from Plantago as a green corrosion inhibitor for carbon steel in 1M HCl solution. Carbohydr Polym. 160 (2017) 172÷183.
  • [60] Anderson I. B., Mullen W. H., Meeker J. E., Khojasteh-Bakht S. C., Oishi S., Nelson S. D., Blanc P. D.: Pennyroyal Toxicity: Measurement of Toxic Metabolite Levels in Two Cases and Review of the Literature. Ann. Intern. Med. 124 (1996) 726÷734.
  • [61] Lorenzo D., Paz D., Dellacassa E., Davies P., Vila R., Canigueral S.: Essential Oils of Mentha pulegium and Mentha rotundifolia from Uruguay. Bras Arch Boil Technol. 45 (2002) 519÷524.
  • [62] Marzouk Z., Marzouk B., Chraief I., Boukef K.: Analysis of Tunisian Mentha pulegium L. oils from Monastir. Rev Reg Arides 1 (2007) 412÷419.
  • [63] Khadraoui A., Khelifa A., Boutoumi H., Hammouti B.: Mentha pulegium extract as a natural product for the inhibition of corrosion. Part I: electrochemical studies. Nat Prod Res. 28 (2014) 1206÷1209.
  • [64] Sun W.: Ginkgo biloba. The IUCN Red List of Threatened Species. Version 2015 2 (1998).
  • [65] Tang Y. P., Lou F. C., Wang J. H., Li Y. F., Zhuang S. F.: Coumaroyl flavonol glycosides from the leaves of Ginkgo biloba. Phytochemistry 58 (2001) 1251÷1256.
  • [66] van Dijk C., Driessen A. J.: The uncoupling efficiency and affinity of flavonoids for vesicles. Biochem Pharmacol 60 (2000) 1593÷1600.
  • [67] Stanislav J., Shahid M., Koji N.: Isolation of ginkgolides A, B, C, J and bilobalide from G. biloba extracts. Phytochemistry 65 (2004) 2897÷2902.
  • [68] Chen G., Zhang M., Zhao J., Zhou R., Meng Z., Zhang J.: Investigation of ginkgo biloba leave extracts as corrosion and Oil field microorganism inhibitors. Chem. Cent. J. 7 (2013) 83.
  • [69] Louati S., Simmonds M. S. J., Grayer R. J., Kite G. C. Damak M.: Flavonoids from Eriobotrya japonica (Rosaceae) growing in Tunisia. Biochem. Syst. Ecol. 31 (2003) 99÷101.
  • [70] Kim J. S., Harikrishnan R., Kim M. C., Jang I. S., Kim D. H., Hong S. H., Balasundaram C., Heo M. S.: Enhancement of Eriobotrya japonica extracts on non-specific immune respons and disease resistance in kelp grouper Epinephelus bruneus against Vibrio carchariae. Fish Shellfish Immun. 31 (2011) 1193÷1200.
  • [71] Cha D. S., Eun J. S., Jeon H.: Anti-inflammatory and antinociceptive properties of the leaves of Eriobotrya japonica. J. Ethnopharmacol. 134 (2011) 305÷312.
  • [72] Zheng X., Gong, M. Li Q., Guo L.: Corrosion inhibition of mild steel in sulfuric acid solution by loquat (Eriobotrya japonica Lindl.) leaves extract. Sci Rep 8 (2018) 9140.
  • [73] Harput U. S., Genc Y., Khan N., Saracoglu I.: Radical scavenging effects of different Veronica species. Rec Nat Prod 5 (2011) 100÷107.
  • [74] Živković J., Barreira J. C. M., Stojković D., Ćebović T., Santos-Buelga C., Maksimović Z., Ferreira I. C. F. R.: Phenolic profile, antibacterial, antimutagenic and antitumour evaluation of Veronica urticifolia. Jacq. J Funct Foods 9 (2014) 192÷201.
  • [75] Beara I., Živković J., Lesjak M., Ristić J., Šavikin K., Maksimović Z.: Phenolic profile and anti-inflammatory activity of three Veronica species. Ind Crops Prod 63 (2015) 276÷280.
  • [76] Grundemann C., Garcia-Kaufer M., Sauer B., Stangenberg E., Konczol M., Merfort I., Zehl M., Huber R.: Traditionally used Veronica officinalis inhibits proinflammatory mediators via the NF-κB signalling pathway in a human lung cell line. J Ethnopharmacol 145 (2013) 118÷126.
  • [77] Kostadinova E. P., Alipieva K. I., Kokubun T., Taskova R. M., Handjieva N. V.: Phenylethanoids, iridoids and a spirostanol saponin from Veronica turrilliana. Phytochemistry. 68 (2007) 1321÷1326.
  • [78] Taskova R. M., Kokubun T., Grayer R. J., Ryan K. G., Garnock-Jones P. J.: Flavonoid profiles in the Heliohebe group of New Zealand Veronica (Plantaginaceae). Biochem Syst Ecol 36 (2008) 110÷116.
  • [79] Kroll-Moller P., Pedersen K., Gousiadou C., Kokubun T., Albach D., Taskova R., Garnock-Jones P. J., Gotfredsen C. H., Jensen S.R.: Iridoid glucosides in the genus Veronica (Plantaginaceae) from New Zealand. Phytochemistry 140 (2017) 174÷180.
  • [80] Ouache R., Harkat H., Pale P., Oulmi K.: Phytochemical compounds and anti-corrosion activity of Veronica rosea. Nat Prod Res 16 (2018) 1÷5.
  • [81] Papademetriou M. K., Dent F. J.: Lychee production in the Asia-Pacific Region. Food and Agricultural Organization of the United Nations, Office for Asia and the Pacific, Bangkok, Thailand (2002).
  • [82] Duan X. W., Jiang Y. M., Su X. G., Zhang Z. Q., Shi J.: Antioxidant properties of anthocyanin s extracted from litchi (Litchi chinenesis Sonn.) fruit pericarp tissues in relation to their role in the pericarp browning. Food Chem. 101 (2007) 1365÷1371.
  • [83] Liao L. L., Mo S., Luo H. Q., Li N. B.: Corrosion protection for mild steel by extract from the waste of lychee fruit in HCl solution: Experimental and theoretical studies. J Colloid Interface Sci. 15 (2018) 41÷49.
  • [84] Hajeski N. J.: National Geographic Complete Guide to Herbs and Spices: Remedies, Seasonings, and Ingredients to Improve Your Health and Enhance Your Life. National Geographic Books, Des Moines (2016).
  • [85] Raja P. B., Sethuraman M. G.: Inhibitive effect of black pepper extract on the sulphuric acid corrosion of mild steel. Mater. Lett. 62 (2008) 2977÷2979.
  • [86] Dennington R., Keith T. A., M. J. M.: GaussView, Version 6, Semichem Inc., Shawnee Mission, KS, 2016.
Uwagi
Opracowanie rekordu w ramach umowy 509/P-DUN/2018 ze środków MNiSW przeznaczonych na działalność upowszechniającą naukę (2019).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-7720ef0a-fb67-45c8-826a-bf2a0a5b20cc
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.