PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Kompozyty uporządkowanych krzemionkowych materiałów mezoporowatych z rodziny M41S

Treść / Zawartość
Identyfikatory
Warianty tytułu
EN
Composites of ordered silica mesoporous materials from the M41S family
Języki publikacji
PL
Abstrakty
EN
Report on the discovery of a new group of ordered mesoporous M41S molecular sieves initiated the extensive use of these materials in scientific research. There were 3 different pores differing in the pore system, generally called MCM (Mobil Composition of Matter): MCM-41 with hexagonal structure, MCM-48 with regular structure and MCM-50 with lamellar structure (Fig. 1). The first proposed synthesis of materials from the M41S group is based on the use of organic surfactants as matrices [4]. The applied modifications of the synthesis method allowed, among others for easy and fairly accurate control of morphology, change of physical properties of the obtained silicas and have an impact on time, cost and simplicity of execution [12, 16, 23–34]. They concerned the use of additional organic and inorganic substances [23–25], changes in reaction conditions [12, 16, 26–29], as well as the use of innovative surfactants [30–34]. Due to its porous structure, the mesoporous silica creates opportunities to improve the properties of many materials, which is why many composites have been synthesized with its used in catalysing, sorption or improving the properties of polymers. Mesoporous titanium catalysts (Ti-MCM-41) were used in the catalysis of the redox reaction or as photocatalysts [44–71]. In addition to titanium, other transition metals have also been introduced into the MCM-41 network, including vanadium, zirconium, niobium, iron, ruthenium, silver, nickel, tungsten [43, 72–98] used as catalysts in organic reactions or as catalysts in the ozonation process [ 99–111]. Polymer composites belong to hybrid materials made of an organic polymer matrix dispersed in inorganic silica. Conductive polymers such as polyaniline and polypyrrole are often used in mesoporous polymer composites due to the ability to conduct electric current [117–133]. The main use of composites with mesoporous silica in sorption processes is to use them to remove impurities from water and gases. MCM-48 composites with various amines were used in the carbon dioxide adsorption process, and composites with niobium and nickel in deodorization processes [141–155]. Synthesis of composites with organic compounds allows to obtain good adsorbents of heavy metals such as: lead, cadmium, arsenic, copper, nickel, zinc and mercury [146–152].
Rocznik
Strony
841--865
Opis fizyczny
Bibliogr. 158 poz., rys., tab., wykr.
Twórcy
autor
  • Uniwersytet w Białymstoku, Wydział Biologiczno-Chemiczny, Instytut Chemii, Zakład Metod Fizykochemicznych, ul. Ciołkowskiego 1K, 15-245 Białystok
  • Uniwersytet w Białymstoku, Wydział Biologiczno-Chemiczny, Instytut Chemii, Zakład Metod Fizykochemicznych, ul. Ciołkowskiego 1K, 15-245 Białystok
Bibliografia
  • [1] X.S. Zhao, G.Q. Lu, G.J. Millar, Ind. Eng. Chem. Res., 1996, 35, 2075.
  • [2] S.T. Wilson, B.M. Lok, C.A. Messina, T.R. Cannan, E.M. Flanigen, J. Am. Chem. Soc., 1982, 104, 1146.
  • [3] B.M. Lok, C.A. Messina, R.L. Patton, R.T. Gajek, T.R. Cannan, E.M. Flanigen, J. Am. Chem. Soc., 1984, 106, 6092.
  • [4] J.S. Beck, J.C. Vartuli, W.J. Roth, M.E. Leonowicz, C.T. Kresge, K.D. Schmitt, C.T.W. Chu, D.H. Olson, E.W. Sheppard, J. Am. Chem. Soc., 1992, 114, 10834.
  • [5] P. Niebrzydowska, P. Kuśtrowski, Mezoporowate materiały węglowe uzyskane na bazie krzemionek, Uniwersytet Jagielloński, Kraków 2012.
  • [6] A.A. Romero, M.D. Alba, W. Zhou, J. Klinowski, J. Phys. Chem. B, 1997, 101, 5294.
  • [7] S. Biz, M.L. Ocelli, Catal. Rev.- Sci. Eng., 1998, 40, 329.
  • [8] J. Choma, M. Jaroniec, J. Klinik, Ochrona środowiska, 2006, 28, 3.
  • [9] C.T. Kresge, M.E. Leonowicz, W.J. Roth, J.C. Vartuli, J.S. Beck, Nature, 1992, 359, 710.
  • [10] M. Grun, I. Lauer, K.K. Unger, Adv. Mater., 1997, 9, 254.
  • [11] D. Kumar, K. Schumacher, C. Hohenesche, M.Grun, K.K. Unger, Coll. and Surf., 2001, 109, 187.
  • [12] K. Schumacher, P.I. Ravikovitch, A. Du Chesne, A.V. Neimark, K.K. Unger, Langmuir, 2000, 16, 4648.
  • [13] M. Kruk, M. Jaroniec, Chem. Mater., 1999, 11, 1999, 2568.
  • [14] V. Alfredszon, M.W. Anderson, Chem. Mater., 1996, 8, 1141.
  • [15] L.A. Solovyov, O.V. Belousov, R.E.Dinnebier, A.N.Shmakov, S.D. Kirik, J. Phys. Chem. B, 2005, 109, 3233.
  • [16] G. Schulz-Ekloff, J. Rathousky, A. Zukal, Microporous Mesoporous Mater., 1999, 27, 273.
  • [17] J. Diaz, J. Perez-Pariente, O. Terasaki, J. Mater. Chem., 2003, 14, 48.
  • [18] A. Kierys, J. Goworek, Materiały krzemionkowe nowej generacji, Zakład Adsorpcji, Wydział Chemii, Uniwersytet Marii Curie-Skłodowskiej, Lublin 2013.
  • [19] D. Trong On, S.M.J. Zaidi, S. Kaliaguine, Microporous Mesoporous Mater., 1998, 22, 211.
  • [20] L.Y. Chen, S. Jaenicke, G.K. Chuah, Microporous Mater., 1997, 12, 323.
  • [21] M.V. Landau, S.P. Varkey, M. Herskowitz, O. Regev, S. Pevzner, T. Sen, Z. Luz, Microporous Mesoporous Mater., 1999, 33, 149.
  • [22] A. Doyle, B.K. Hodnett, Microporous Mesoporous Mater., 2003, 63, 53.
  • [23] N.K. Raman, M.T. Anderson, C.J. Brinker, Chem. Mater., 1996, 8, 1682.
  • [24] O. Franke, J. Rathousky, G. Schulz-Ekloff, A. Zukal, Elsevier, 1995, 91, 309.
  • [25] H. De-run, Ch. Sheng-li, Z. Zheng, Ch. Ai-Cheng, L. Rui, J. Fuel Chem. Technol., 2012, 40, 5.
  • [26] K. Schumacher, M. Grun, K.K. Unger, Microporous Mesoporous Mater., 1999, 27, 201.
  • [27] J. Choma, M. Jaroniec, M. Kloske, Wiadomości Chemiczne, WUW, Wrocław 2001.
  • [28] J. Xu, Z. Luan, H. He, W. Zhou, L. Kevan, Chem. Mater., 1998, 10, 3690.
  • [29] P. Behrens, A. Glaue, Ch. Hagganmuller, G. Schechner, Solid State Ion., 1997, 255, 101.
  • [30] M. Widenmeyer, R. Anwander, Chem. Mater., 2002, 14, 1827.
  • [31] P.T. Tanev, T.J. Pinnavaia, Chem. Mater., 1996, 8, 2068.
  • [32] A. Taguchi, F. Schuth, Microporous Mesoporous Mater., 2005, 77, 1.
  • [33] J. Wang, J. Lu, J. Yang, W. Xiao, J. Wang, Mater. Lett., 2012, 78, 199.
  • [34] P. Van Der Voort, M. Mathieu, F. Mees, E.F. Vansant, J. Phys. Chem. B, 1998, 102, 8847.
  • [35] A. Sayari, Chem. Mater., 1996, 8, 1840.
  • [36] C.-Y. Chen, S.L. Burkett, H.-X. Li, M.E. Davis, Microporous Mater., 1993, 2, 27.
  • [37] Davis, E. Mark, Nature, 1993, 364, 391.
  • [38] A. Monnier, F. Schuth, Q. Huo, D. Kumar, D. Margolese, R.S. Maxwell, G.D. Stucky, M. Krishnamurty, P. Petroff, A. Firouzi, M. Janicke, Science, 1993, 261, 1299.
  • [39] A. Firouzi, D. Kumar, L.M. Bull, T. Besier, P. Sieger, Q. Huo, S.A. Walker, J.A. Zasadzinski, C. Glinka, J. Nicol, D. Margolese, G.D. Stucky, B.F. Chmelka, Science, 1995, 267, 1138.
  • [40] A. Galarneaua, F. Di Renzoa, F. Fajulaa, L. Mollob, B. Fubinib, M.F. Ottavianic, J. Coll. Interf. Scien., 1998, 201, 105.
  • [41] M. Luechinger, L. Frunz, G.D. Pirngruber, R. Prins, Microporous Mesoporous Mater., 2003, 64, 203.
  • [42] M. Grun, K.K. Unger, A. Matsumoto, K. Tsutsumi, Microporous Mesoporous Mater., 1999, 27, 207.
  • [43] I. Nowak, M. Ziołek, Mezoporowate sita molekularne-synteza, charakterystyka, właściwości fizykochemiczne i katalityczne, [w:] Wiadomości Chemiczne, WUW, Wrocław 2001.
  • [44] X.L. Yang, W.L. Dai, R. Gao, K. Fan, J. Catal., 2007, 249, 278.
  • [45] A. Corma, M.T. Navarro, J. Perez-Pariente, J. Chem. Soc., Chem. Commun, 1994, 147.
  • [46] P.T. Tanev, M. Chibwe, T.J. Pinnavaia, Nature, 1994, 368, 321.
  • [47] S.K. Roy, D. Dutta, A.K. Talukdar, Mater. Res. Bull. 2018, 103, 38.
  • [48] J. Liu, S. Fang, R. Jian, F. Wu, P. Jian, Power Technology, 2018, 329, 19.
  • [49] N. Igarashi, K. Hashimoto, T. Tatsumi., Microporous Mesoporous Mater., 2007, 104, 269.
  • [50] W.H. Yu, C.H. Zhou, X.S. Xu, Z.H. Ge, Chinese Chem. Lett., 2007, 18, 341.
  • [51] L.J. Davies, P. McMorn, D. Bethell, P.C. Bulman Page, G.J. Hutchings, J. Mol. Catal., 2001, 165, 243.
  • [52] M. Fadhli, I. Khedher, J.M. Fraile, Compte Rendu Chimie, 2017, 20, 827.
  • [53] M. Fadhli, I. Khedher, J.M. Fraile, J. Mol. Catal., 2016, 420, 282.
  • [54] J. Silvestre-Albero, M.E. Domine, J.L. Jorda, M.T. Navarro, A. Corma, Appl. Catal. A, 2015, 507, 14.
  • [55] A. Wróblewska, A. Fajdek, J. Wajzberg, E. Milchert, J. Hazardous Mater., 2009, 170, 405.
  • [56] J.M.R Gallo, I.S. Paulino, U. Schuchardt, Appl. Catal. A, 2004, 266, 223.
  • [57] Q. Yuan, A. Hagen, F. Roessner, Appl. Catal. A, 2006, 303, 81.
  • [58] C. Berlini, M. Guidotti, G. Moretti, R. Psaro, N. Ravasio, Catal. Today, 2000, 60, 219.
  • [59] K. Lin, P.P. Pescarmona, K. Houthoofd, D. Liang, P.A. Jacobs, J. Catal., 2009, 263, 75.
  • [60] D. Marino, N.G. Gallegos, J.F. Bengoa, A.M. Alvarez, S.G. Marchetti, Catal. Today, 2008, 133-135, 632.
  • [61] S.K. Mohamed, A.A. Ibrahim, A.A. Mousa, M.A. Betiha, H.M.A. Hassan, Sep. Purif. Technol., 2018, 195, 174.
  • [62] M.M. Ambursa, P. Sudarsanam, L.H. Voon, S.B.A. Hamid, S.K. Bhargava, Fuel Process. Technol., 2017, 162, 87.
  • [63] S.B. Abd Hamid, M.M. Ambursa, P. Sudarsanam, L.H. Voon, S.B.A. Hamid, S.K. Bhargava, Catal. Commun., 2017, 94, 18.
  • [64] F.J. Mendez, G. Bravo-Ascencion, M. Gonzalez-Mota, I. Puente-Lee, T.E. Klimova, Catal. Today, 2018.
  • [65] K. Aghapoor, M.M. Amini, K. Jadidi, F. Mohsenzadeh, M.R. Jalali, Solid State Sciences, 2015, 49, 10.
  • [66] J. Gonzalez, L.F. Chen, J.A. Wang, M. Manriquez, J.L. Contreras, Appl. Surf. Sci., 2016, 379, 367.
  • [67] K. Zhou, X.-D. Xie, C.-T. Chang, Appl. Surf. Sci., 2017, 416, 248.
  • [68] H. Chen, Y.-P. Peng, K.-F. Chen, C.-H. Lai, Y.-C. Lin, J. Environ. Sci., 2016, 44, 76.
  • [69] Y.-J. Do, J.-H. Kim, J.-H. Park, S.-S. Park, G.-D. Lee, Catal. Today, 2005, 101, 299.
  • [70] V.-H. Nguyen, S.D. Lin, J.C.S. Wu, H. Bai, Catal. Today, 2015, 245, 186.
  • [71] M. Mureseanu, M. Filip, S. Somacescu, A. Baran, G. Carja, V. Parvulescu, Appl. Surf. Sci., 2018, 444, 235.
  • [72] N.A. Bhore, I.D. Johnson, K.M. Keville, Q.N. Le, G.H. Yokomizo, U.S. Patent 5, 1993, 260, 501.
  • [73] A. Romero, A. Nieto-Marquez, E. Alonsa, Appl. Catal. A, 2017, 529, 49.
  • [74] A. Romero, E. Alonsa, A. Sastre, A. Nieto-Marquez, Microporous Mesoporous Mater., 2016, 224, 1.
  • [75] X.L. Yang, W.L. Dai, R. Gao, K. Fan, J. Catal., 2007, 249, 278.
  • [76] X.L. Yang, W.L. Dai, R. Gao, H. Chen, H. Li, Y. Cao, K. Fan, J. Mol. Catal. A, 2005, 241, 205.
  • [77] Z. Zhang, J. Suo, X. Zhang, S. Li, Appl. Catal. A: General, 1999, 179, 11.
  • [78] T.H. Abreu, C.I. Meyer, C. Padro, L. Martins, Microporous Mesoporous Mater., 2019, 237, 219.
  • [79] X. Wang, G. Zhou, Z. Chen, Q. Li, C. Xu, Appl. Catal., 2018, 555, 171.
  • [80] X. Wang, G. Zhou, Z. Chen, W. Jiang, H. Zhou, Microporous Mesoporous Mater., 2016, 223, 261.
  • [81] A.L. Canepa, V.R. Elias, V.M. Vaschetti, E.V. Sabre, S.G. Casuscelli, Appl. Catal., 2017, 545, 72.
  • [82] J. Xu, Q. Zhang, F. Guo, J. Hong, W. Chu, J. Energ. Chem., 2016, 25, 1058.
  • [83] Z. Han, X. Xue, J. Wu, W. Lang, Y. Guo, Chinese J. Catal., 2018, 39, 1099.
  • [84] A.S.Al-Fatesh, H. Atia, J.K. Abu-Dahrieh, A.A. Ibrahim, A.H. Fakeeha, Int. J. Hydr. Energy, 2018.
  • [85] N. Cakiryilmaz, H. Arbag, N. Oktar, G. Dogu, T. Dogu, Catal. Today, 2018.
  • [86] M. Ye, Y. Tao, F. Jin, H. Ling, J. Huang, Catal. Today, 2018, 307, 154.
  • [87] H. Batmani, N.N. Pesyan, F. Havasi, Microporous Mesoporous Mater., 2018, 257, 27.
  • [88] R.Y. Abrokwah, V.G. Deshmane, D.Kuila, J. Mol. Catal. A, 2016, 425, 10.
  • [89] J. Ding, M. Cui, T. Ma, R. Shao, P. Wang, Mol. Catal., 2018, 457, 51.
  • [90] X. Chu, D. Zhou, D. Li, K. Xia, Q. Xia, Microporous Mesoporous Mater., 2016, 230, 166.
  • [91] Y.-C. Chien, H.P. Wang, S. Liu, T.L. Hsiung, C. Peng, J. Hazardous Mater., 2008, 151, 461.
  • [92] M. Selvaraj, P.K. Sinha, K. Lee, I. Ahn, T.G. Lee, Microporous Mesoporous Mater., 2005, 78, 139.
  • [93] M. Anilkumar, W.F. Hoelderich Appl. Catal., 2015, 165, 87.
  • [94] J.M.R. Gallo, I.S. Paulino, U. Schuchardt, Stud. Surf. Sci. Catal., 2004, 154, 2945.
  • [95] J.M.R. Gallo, H.O. Pastore, U. Schuchardt, J. Catal., 2006, 243, 57.
  • [96] G.V. Mamontov, A.S. Gorbunova, E.V. Vyshegorodtseva, V.I. Zaikovskii, O.V. Vodyankina, Catal. Today, 2018.
  • [97] D. Chen, Z. Qu, Y. Lv, X. Lu, X. Gao, J. Mol. Catal. A, 2015, 404-405, 98.
  • [98] X.N. Pham, B.M. Nguyen, H.T. Thi, H.V. Doan, Adv. Powder Tech., 2018, 29, 1827.
  • [99] S.P. Ghuge, A.K. Saroha, J. Environ. Manag., 2018, 211, 83.
  • [100] W. Chen, X. Li, Y. Tang, J. Zhou, L. Li, J. Hazardous Mater., 2018, 346, 226.
  • [101] R. Huang, B. Lan, Z. Chen, H. Yan, L. Li, Chem. Eng. J., 2012, 180, 19.
  • [102] X. Li, W. Chen, Y. Tang, L. Li, Chemosphere, 2018, 206, 615.
  • [103] W. Chen, X. Li, Z. Pan, S. Ma, L. Li, Chem. Eng. J., 2016, 304, 594.
  • [104] Z. Jeirani, J. Soltan, Chem. Eng. J., 2017, 307, 756.
  • [105] Z. Jeirani, J. Soltan, J. Water Proc. Eng., 2016, 12, 127.
  • [106] J. Bing, X. Wang, B. Lan, G. Liao, L. Li, Sep. Pur. Technol., 2013, 118, 479.
  • [107] W. Li, X. Lu, K. Xu, J. Qu, Z. Qiang, Water Research, 2015, 86, 2.
  • [108] S. Li, Y. Tang, W. Chen, Z. Hu, L. Li, J. Coll. Interf. Sci., 2017, 504, 238.
  • [109] Y. Tang, Z. Pan, L. Li, J. Coll. Interf. Sci., 2017, 508, 196.
  • [110] M. Li, K.N. Hui, K.S. Hui, S.K. Lee, Y. Li, Appl. Catal. B, 2011, 107, 245.
  • [111] M. Sui, J. Liu, L. Sheng, Appl. Catal. B, 2011, 106, 195.
  • [112] H. Zou, S.S. Wu, J. Shen, Chem. Rev., 2008, 108, 3893.
  • [113] L. Wei, N. Hu, Y. Zhang, Materials, 2010, 3, 4066.
  • [114] M.T. Run, S.Z. Wu, D.Y. Zhang, G. Wu, Mater. Chem. Phys., 2007, 105, 341.
  • [115] F. Hoffman, M. Cornelius, J. Morell, Angew. Chem. Int. Edit., 2006, 45, 3216.
  • [116] A.P. Nowak, Synteza i właściwości warstw poli(3,4-etylenodioksytiofenu) modyfikowanego heksacyjano żelazianami (II/III) wybranych metali przejściowych, Politechnika Gdańska, Wydział Chemii, Gdańsk 2008.
  • [117] X. Feng, G. Yang, Y. Liu, W. Hou, J.J. Zhu, J. Appl. Polymer Sci., 2006, 101, 2088.
  • [118] X. Sun, J. Ren, L. Zhang, L. Chen, H. Li, R. Li, J. Ma, Synthetic Metals, 2010, 160, 2244.
  • [119] L.C. Fonseca, R. Faez, F.F. Camilo, M.A. Bizeto, Microporous Mesoporous Mater., 2012, 159, 24.
  • [120] C.M.S. Izumi, V.R.L. Constantino, M.L.A. Temperini, J. Phys. Chem. B 2005, 109, 22131.
  • [121] Y. An, W. Song, P. Wei, M. Fan, H. Chen, Q. Ju, D. Chen, G. Tian, C. Lv, K. Shu, Renewable Energy, 2006, 99, 289.
  • [122] X. Feng, Z. Yan, N. Chen, Y. Zhang, X. Liu, Y. Ma, X. Yang, W. Hou, New J. Chem. 2013, 37, 2203.
  • [123] M.S. Cho, H.J. Choi, W.S. Ahn, Langmuir, 2004, 20, 202.
  • [124] H.J. Choi, M.S. Cho, W.S. Ahn, Synt. Metals, 2003, 135-136, 711.
  • [125] D.Y. Takamoria, M.A. Bizetoa, M.C. Abreu Fantinib, C.P. Lacerda Rubingerc, R. Faezd, T. Silva Martins, Microporous Mesoporous Mater., 2019, 274, 212.
  • [126] O.A. Anunziata, M.B. Gomez Costa, R.D. Sanchez, J. Coll. Interf. Sci., 2005, 292, 509.
  • [127] N. Wang, Y.H. Wu, K.Q. Cheng, J. Zhang, Mater. Corros., 2014, 65, 968.
  • [128] Q. Cheng, V. Pavlinek, Ch. Li, A. Lengalova, Y. He, P. Saha, Mater. Chem. Phys., 2006, 98, 504.
  • [129] M. Wysocka-Zolopa, I. Zablocka, A. Basa, K. Winkler, Chem. Heterocycl. Compd., 2017, 53, 78.
  • [130] M. Nakayama, J. Yano, K. Nakaoka, K. Ogura, Synt. Metals, 2002, 128, 57.
  • [131] R. Guo, G. Li, W. Zhang, G. Shen, D. Shen, Chem. Phys. Chem., 2005, 6, 2025.
  • [132] S. Spange, Angew. Chem. Int. Ed., 2003 42, 4430.
  • [133] F.F. Feng, H.J. Choi, W.S. Ahn, Microporous Mesoporous Mater., 2010, 130, 338.
  • [134] F.F. Feng, M.S. Cho, H.J. Choi, S.S. Yoon, W.S. Ahn, J. Ind. Eng. Chem., 2008, 14, 18.
  • [135] Q. Cheng, V. Pavlinek, Ch. Li, A. Lengalova, Y. He, P. Saha, Microporous Mesoporous Mater., 2006, 93, 263.
  • [136] Q. Cheng, V. Pavlinek, Ch. Li, A. Lengalova, T. Belza, P. Saha, Microporous Mesoporous Mater., 2006, 94, 193.
  • [137] K.P. Lee, A.M. Showkat, A.I. Gopalan, S.H. Kim, S.H. Choi, Macromolecules, 2005, 38, 364.
  • [138] R. Janus, A. Wach, P. Kustrowski, B. Dudek, M. Drozdek, A.M. Silvestre-Albero, F. Rodriguez-Reinoso, P. Cool, Langmuir, 2013, 29, 3045.
  • [139] R.J. Kalbasi, N. Mosaddegh, Catal. Commun., 2011, 12, 1231.
  • [140] J. He, Y. Shen, D.G. Evans, X. Duan, Composites A, 2006, 37, 379.
  • [141] N. Wang, M. Li, J. Zhang, Mater. Lett., 2005, 59, 2685.
  • [142] N. Wang, Y. Shao, Z. Shi, J. Zhang, H. Li, Mater. Sci. Eng. A, 2008, 497, 363.
  • [143] F.A. Zhang, D.K. Lee, T.J. Pinnavaia, Polym. Chem., 2010, 1, 107.
  • [144] M. Oszust, M. Barczak, A. Dąbrowski, Mezoporowate materiały krzemionkowe – charakterystyka i zastosowanie, Zakład Adsorpcji, Lublin 2013.
  • [145] S. Kim, J. Ida, V.V. Guliants, J.Y.S. Lin, Tailoring J. Phys. Chem. B, 2005, 109, 6287.
  • [146] C. Ji, L. Zhang, L. Li, F. Li, F. Xiao, N. Zhao, W. Wei, Y. Chen, F. Wu, Ind. Eng. Chem. Res., 2016, 55, 7853.
  • [147] M. Ziolek, I. Nowak, H. Poltorak, A. Lewandowska, I. Sobczak, Stud. Surf. Sci. Catal., 1999, 125, 691.
  • [148] C. Cara, E. Rombi, V. Mameli, A. Ardu, M.S. Angotzi, D. Niznansky, A. Musinu, C. Cannas, J. Phys. Chem. C 2018, 122, 12231.
  • [149] J. Aguado, J.M. Arsuaga, A. Arencibia, M. Lindo,V. Gascon, J. Hazardous Mater., 2009, 163, 213.
  • [150] J. Aguado, J. M. Arsuaga, A. Arencibia, Microporous Mesoporous Mater, 2008, 109, 513.
  • [151] X. Feng, G.E. Fryxell, L.Q. Wang, A.Y. Kim, J. Liu, K.M. Kemner, Science, 1997, 276, 923.
  • [152] M. Algarra, M.V. Jimenez, E. Rodriguez-Castellon, A. Jimenz-Lopez, J. Jimenez-Jimenez, Chemosphere, 2005, 59, 779.
  • [153] M. Dinari, R. Soltani, G. Mohammadnezhad, J. Chem. Eng., 2017, 62, 2316.
  • [154] D. Dutta, S. Kumar Roy, A.K. Talukdar, J. Env. Chem. Eng., 2017, 5, 4707.
  • [155] A.K. Basumatary, R.V. Kumar, A.K. Ghoshal, G. Pugazhenthi, Chemosphere, 2016, 153, 436.
  • [156] M. Anbia, K. Kargosha, S. Khoshbooei, Chem. Eng. Res. Des., 2015, 93, 779.
  • [157] S.O. Akpotu, B. Moodley, J. Mol. Liq., 2018, 261, 540.
  • [158] F. Nezampour, M. Ghiaci, K. Masoomi, J. Chem. Eng., 2018, 63, 1977.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-7712d80e-477c-4d6b-83e7-1af063fc8fd7
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.