PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Powiadomienia systemowe
  • Sesja wygasła!
  • Sesja wygasła!
  • Sesja wygasła!
  • Sesja wygasła!
Tytuł artykułu

Kendall random walks

Wybrane pełne teksty z tego czasopisma
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
The paper deals with a new class of random walks strictly connected with the Pareto distribution. We consider stochastic processes in the sense of generalized convolution or weak generalized convolution. The processes are Markov processes in the usual sense. Their structure is similar to perpetuity or autoregressive model. We prove the theorem which describes the magnitude of the fluctuations of random walks generated by generalized convolutions. We give a construction and basic properties of random walks with respect to the Kendall convolution.We show that they are not classical Lévy processes. The paper proposes a new technique to cumulate the Pareto-type distributions using a modification of the Williamson transform and contains many new properties of weakly stable probability measure connected with the Kendall convolution. It seems that the Kendall convolution produces a new class of heavy tailed distributions of Pareto-type.
Rocznik
Strony
165--185
Opis fizyczny
Bibliogr. 24 poz.
Twórcy
  • Institute of Mathematics, Wrocław University, pl. Grunwaldzki 2/4, 50-384 Wrocław, Poland
Bibliografia
  • [1] M. Borowiecka-Olszewska, B. H. Jasiulis-Gołdyn, J. K. Misiewicz, and J. Rosiński, Lévy processes and stochastic integral in the sense of generalized convolution, Bernoulli 21 (4) (2015), pp. 2513-2551.
  • [2] D. Buraczewski, On invariant measures of stochastic recursions in a critical case, Ann. Appl. Probab. 17 (4) (2007), pp. 1245-1272.
  • [3] S. Cambanis, R. Keener, and G. Simons, On α-symmetric distributions, J. Multivariate Anal. 13 (1983), pp. 213-233.
  • [4] W. Hazod, Remarks on pseudo stable laws on contractible groups, Technische Universität Dortmund, preprint, 2012.
  • [5] W. Jarczyk and J. K. Misiewicz, On weak generalized stability and (c, p)-pseudostable random variables via functional equations, J. Theoret. Probab. 22 (2) (2009), pp. 482-505.
  • [6] B. H. Jasiulis, Limit property for regular and weak generalized convolutions, J. Theoret. Probab. 23 (1) (2010), pp. 315-327.
  • [7] B. H. Jasiulis-Gołdyn and A. Kula, The Urbanik generalized convolutions in the noncommutative probability and a forgotten method of constructing generalized convolution, Proc. Indian Acad. Sci. Math. Sci. 122 (3) (2012), pp. 437-458.
  • [8] B. H. Jasiulis-Gołdyn and J. K. Misiewicz, On the uniqueness of the Kendall generalized convolution, J. Theoret. Probab. 24 (3) (2011), pp. 746-755.
  • [9] B. H. Jasiulis-Gołdyn and J. K. Misiewicz, Weak Lévy-Khintchine representation for weak infinite divisibility, Theory Probab. Appl. 60 (1) (2016), pp. 45-61.
  • [10] O. Kallenberg, Foundations of Modern Probability, Springer, 1997.
  • [11] J. F. C. Kingman, Random walks with spherical symmetry, Acta Math. 109 (1) (1963), pp. 11-53.
  • [12] J. Kucharczak and K. Urbanik, Transformations preserving weak stability, Bull. Polish Acad. Sci. Math. 34 (7-8) (1986), pp. 475-486.
  • [13] G. Mazurkiewicz, Weakly stable vectors and magic distribution of S. Cambanis, R. Keener and G. Simons, Appl. Math. Sci. 1 (2007), pp. 975-996.
  • [14] A. J. McNeil and J. Nešlehová, Multivariate Archimedean copulas, d-monotone functions and l1-norm symmetric distributions, Ann. Statist. 37 (5B) (2009), pp. 3059-3097.
  • [15] J. K. Misiewicz, Weak stability and generalized weak convolution for random vectors and stochastic processes, IMS Lecture Notes Monogr. Ser. 48 (2006), pp. 109-118.
  • [16] J. K. Misiewicz, K. Oleszkiewicz, and K. Urbanik, Classes of measures closed under mixing and convolution. Weak stability, Studia Math. 167 (3) (2005), pp. 195-213.
  • [17] K. Urbanik, A characterisation of Gaussian measures, Studia Math. 77 (1983), pp. 59-68.
  • [18] K. Urbanik, Generalized convolutions I-V, Studia Math. 23 (1964), pp. 217-245; 45 (1973), pp. 57-70; 80 (1984), pp. 167-189; 83 (1986), pp. 57-95; 91 (1988), pp. 153-178.
  • [19] N. Van Thu, A Kingman convolution approach to Bessel processes, Probab. Math. Statist. 29 (1) (2009), pp. 119-134.
  • [20] C. Vignat and A. Plastino, Geometry of the central limit theorem in the nonextensive case, Phys. Lett. A 373 (20) (2009), pp. 1713-1718.
  • [21] V. Vol’kovich, Quasiregular stochastic convolutions. Stability problems for stochastic models, J. Soviet. Math. 47 (5) (1989), pp. 2685-2699.
  • [22] V. Vol’kovich, On symmetric stochastic convolutions, J. Theoret. Probab. 5 (3) (1992), pp. 417-430.
  • [23] V. Vol’kovich, D. Toledano-Kitai, and R. Avros, On analytical properties of generalized convolutions, Banach Center Publ., Vol 90: Stability in Probability, J. K. Misiewicz (Ed.), Warszawa 2010, pp. 243-274.
  • [24] R. E. Williamson, Multiply monotone functions and their Laplace transforms, Duke Math. J. 23 (1956), pp. 189-207.
Uwagi
Opracowanie rekordu w ramach umowy 509/P-DUN/2018 ze środków MNiSW przeznaczonych na działalność upowszechniającą naukę (2019).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-75a19139-3115-4ed0-9b6c-d77cf833b7f2
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.