PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Influence of Walls in a Container on the Growth of the Chlorella Vulgaris Algae

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
Most of the algae are eukaryotic organisms commonly found in the aquatic environment. They are characterized by a great variety of species and the possibility of growing under various conditions. They photosynthesize, mainly needing light, water and carbon dioxide to grow. Algae can be used in various branches of the economy for the production of food, animal feed, bio-fertilizers, pigments, they can be used for sewage treatment or carbon dioxide sequestration. The aim of the work was to investigate the effect of the material from which the walls of containers are made on the bioreactors for algae cultivation. Two wall materials were used in the research: shiny aluminium foil and matte black light-absorbing paper. The content of photosynthetic pigments in algae cells, optical density, temperature and pH were examined. The tests were performed in triplicate and the standard error was calculated with the 95% confidence interval. It was observed that the glossy aluminium foil wall significantly improved the growth of the Chlorella vulgaris algae at the lowest light intensities by more than 4 times chlorophyll a compared to the sample placed in a container with walls of matte black paper. This means that the use of walls in shiny aluminium foil containers can reduce the lighting costs and contribute to an increase in the produced biomass.
Rocznik
Strony
98--108
Opis fizyczny
Bibliogr. 25 poz., rys., tab.
Twórcy
  • Department of Chemistry, Biology and Biotechnology, Faculty of Civil Engineering and Environmental Sciences, Bialystok University of Technology, ul. Wiejska 45E, 15-351 Bialystok, Poland
  • Department of Chemistry, Biology and Biotechnology, Faculty of Civil Engineering and Environmental Sciences, Bialystok University of Technology, ul. Wiejska 45E, 15-351 Bialystok, Poland
Bibliografia
  • 1. Ajayan K.V., Harilal C.C., Gani P. 2019. Performance of reflector coated LED Bio-box on the augmentation of growth and lipid production in aerophytic trebouxiophyceaen algae Coccomyxa sp. Algal Research, 38, 101401.
  • 2. Benavente-Valdés J.R., Méndez-Zavala A., Morales-Oyervides L., Chisti Y., Montañez J. 2017. Effects of shear rate, photoautotrophy and photoheterotrophy on production of biomass and pigments by Chlorella vulgaris. Journal of Chemical Technology and Biotechnology, 92(9), 2453–2459.
  • 3. Blair M.F., Kokabian B., Gude V.G. 2014. Light and growth medium effect on Chlorella vulgaris biomass production. Journal of Environmental Chemical Engineering, 2(1), 665–674.
  • 4. Czerwik-Marcinkowska J. 2019. Algology (in Polish). Polish Scientific Publishers PWN, Warsaw.
  • 5. Dębowski M., Kisielewska M., Kazimierowicz J., Zieliński M. 2020. Influence of the light source on the chlorella vulgaris biomass growth in the culture medium supplemented with anaerobic digestate. Rocznik Ochrona Srodowiska, 22(2), 605–621.
  • 6. Dogaris I., Welch M., Meiser A., Walmsley L., Philippidis G. 2015. A novel horizontal photobioreactor for high-density cultivation of microalgae. Bioresource Technology, 198, 316–324.
  • 7. Dziosa K., Makowska M. 2016. Monitoring of Chlorella sp. Growth based on the optical density measurement. Maintenance problems, 2, 197–206.
  • 8. Energy Regulatory Office 2021. Information of the President of the Energy Regulatory Office No. 25/2021. https://www.ure.gov.pl/pl/urzad/informacje-ogolne/komunikaty-prezesa-ure/9403,Informacja-nr-252021.html
  • 9. Geller D.P., Das K.C., Bagby-Moon T., Singh M., Hawkins G., Kiepper B.H. 2018. Biomass productivity of snow algae and model production algae under low temperature and low light conditions. Algal Research, 33, 133–141.
  • 10. Guiry M.D. & Guiry G.M. 2021. Algaebase. World-wide electronic publication. https://www.algaebase.org. Accessed 20 Jun 2021
  • 11. Huang Y., Sun Y., Liao Q., Fu Q., Xia A., Zhu X. 2016. Improvement on light penetrability and microalgae biomass production by periodically preharvesting Chlorella vulgaris cells with culture medium recycling. Bioresource Technology, 216, 669–676.
  • 12. Kondzior P., Butarewicz A. 2018. Effect of heavy metals (Cu and Zn) on the content of photosynthetic pigments in the cells of algae Chlorella vulgaris. Journal of Ecological Engineering, 19(3), 18–28.
  • 13. Kondzior P. & Butarewicz A. 2021. Influence of Walls in Container on the Growth of Chlorella vulgaris Algae. Proceedings (in the process of publishing).
  • 14. Kondzior P., Tyniecki D., Butarewicz A. 2019. Influence of Color Temperature of White LED Diodes and Illumination Intensity on the Content of Photosynthetic Pigments in Chlorella vulgaris Algae Cells. Proceedings, 16(1), 46.
  • 15. Kutsay A., Kratky L., Jirout T. 2020. Biogas Plant Upgrade to CO2-Free Technology: A Techno-Economic Case Study. Chemical Engineering and Technology, 43(10), 1981–1993.
  • 16. Lysenko V., Kosolapov A., Usova E., Tatosyan M., Varduny T., Dmitriev P., Rajput V., Krasnov V., Kunitsina A. 2021. Chlorophyll fluorescence kinetics and oxygen evolution in Chlorella vulgaris cells: Blue vs. red light. Journal of Plant Physiology, 258–259, 153392.
  • 17. Morales-Sánchez D., Martinez-Rodriguez O.A., Martinez A. 2017. Heterotrophic cultivation of microalgae: production of metabolites of commercial interest. J. Chem. Technol. Biotechnol, 92, 925–936
  • 18. Ramanna L., Rawat I., Bux F. 2017. Light enhancement strategies improve microalgal biomass productivity. Renewable and Sustainable Energy Reviews, 80, 765–773.
  • 19. Salmean C., Bonilla S., Azimi Y., Aitchison J.S., Allen D.G. 2019. Design and testing of an externally-coupled planar waveguide photobioreactor. Algal Research, 44.
  • 20. Siedlewicz G., Żak A., Sharma L., Kosakowska A., Pazdro K. 2020. Effects of oxytetracycline on growth and chlorophyll a fluorescence in green algae (Chlorella vulgaris), diatom (Phaeodactylum tricornutum) and cyanobacteria (Microcystis aeruginosa and Nodularia spumigena). Oceanologia, 62(2), 214–225.
  • 21. Singh R.N., Sharma S. 2012. Development of suitable photobioreactor for algae production – A review. Renewable and Sustainable Energy Reviews, 16(4), 2347–2353.
  • 22. Suganya T., Varman M., Masjuki H.H., Renganathan S. 2016. Macroalgae and microalgae as a potential source for commercial applications along with biofuels production: A biorefinery approach. Renewable and Sustainable Energy Reviews, 55, 909–941.
  • 23. Wahidin S., Idris A., Shaleh S.R.M. 2013. The influence of light intensity and photoperiod on the growth and lipid content of microalgae Nannochloropsis sp. Bioresource Technology, 129, 7–11.
  • 24. Xiong J.Q., Kurade M.B., Abou-Shanab R.A.I., Ji M.K., Choi J., Kim J.O., Jeon B.H. 2016. Biodegradation of carbamazepine using freshwater microalgae Chlamydomonas mexicana and Scenedesmus obliquus and the determination of its metabolic fate. Bioresource Technology, 205, 183–190.
  • 25. Yu Y., Oo N., Su C., Kyaw K.T. 2017. Extraction And Determination Of Chlorophyll Content From Microalgae. IjarpOrg, 1(5), 298–301.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-7518d195-c4b4-4e7e-a2ed-db3784739699
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.