PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Impregnation of Poly(lactic Acid) with Polyphenols of Plant Origin

Treść / Zawartość
Identyfikatory
Warianty tytułu
PL
Impregnacja poli(kwasu mlekowego) (PLA) polifenolami pochodzenia roślinnego
Języki publikacji
EN
Abstrakty
EN
The aim of the research was the solvent-based impregnation of poly(lactic acid) (PLA) with polyphenols of plant origin. The process is a scientific novelty because quercetin, rutin, xanthone and green tea extract had not been previously used to stabilise PLA as a result of the solvent-based impregnation of a polymer. As part of the work, the extruded poly(lactic acid) was impregnated with ethanol solutions of polyphenols. Samples after impregnation were subjected to tests: determination of mechanical properties, differential scanning calorimetry, melt flow index and SEM microscopy. In addition, the properties of the samples, such as the Vicat softening temperature and change in colour, before and after controlled weathering as well as thermal and UV aging were investigated. On the basis of the results presented, the effectiveness of the impregnation of poly(lactic acid) with natural compounds was confirmed as a new method of stabilisation of the biodegradable polyester selected.
PL
Celem badań była rozpuszczalnikowa impregnacja poli(kwasu mlekowego) (PLA) z zastosowaniem polifenoli pochodzenia roślinnego. Proces jest nowością naukową, ponieważ kwercetyna, rutyna, ksanton i ekstrakt zielonej herbaty nie były wcześniej stosowane do stabilizacji PLA w procesie impregnacji polimeru. W ramach pracy wytłoczyny poli(kwasu mlekowego) impregnowano etanolowymi roztworami polifenoli. Próbki po impregnacji poddano badaniom: określeniu właściwości mechanicznych, różnicowej kalorymetrii skaningowej, wskaźnikowi szybkości płynięcia i mikroskopii SEM. Ponadto zbadano właściwości próbek, takie jak temperatura mięknienia Vicata i zmiana koloru, przed i po kontrolowanym starzeniu klimatycznym, termicznym i wywołanym promieniowaniem UV. Na podstawie przedstawionych wyników potwierdzono skuteczność impregnacji poli (kwasu mlekowego) związkami naturalnymi jako nową metodę stabilizacji wybranego biodegradowalnego poliestru.
Rocznik
Strony
15--20
Opis fizyczny
Bibliogr. 33 poz., rys., tab.
Twórcy
  • Lodz University of Technology, Institute of Polymer and Dye Technology, Faculty of Chemistry, 90-924 Lodz, ul. Stefanowskiego 12/16, Poland
autor
  • Lodz University of Technology, Institute of Polymer and Dye Technology, Faculty of Chemistry, 90-924 Lodz, ul. Stefanowskiego 12/16, Poland
Bibliografia
  • 1. Avinc O, Khoddami A. Overview of Poly(lactic acid) (PLA) Fibre: Part I: Production, Properties, Performance, Environmental Impact, and End-use Applications of Poly(lactic acid) Fibres. Fibre Chem. 2009; 4(6): 391-401.
  • 2. Bledzki AK, Jaszkiewicz A, Urbaniak M, Stankowska-Walczak D. Biocomposites in the Past and in the Future. FIBRES & TEXTILES in Eastern Europe 2012; 20, 6B (96): 15-22.
  • 3. Carothers WH, Dorough G, Natta FV. Studies of Polymerization and Ring Formation. X. The Reversible Polymerization of Six-Membered Cyclic Esters. J Am Chem Soc. 1932; 54: 761-772.
  • 4. Hu Y, Daoud WA, Ka Leung Cheuk K, Sze Ki Lin C. Newly Developed Techniques on Polycondensation, Ring-Opening Polymerization and Polymer Modification: Focus on Poly(Lactic Acid). Materials 2016; 9: 133.
  • 5. Dutkiewicz S, Grochowska-Łapienis D, Tomaszewski W. Synthesis of Poly(L(+) Lactic Acid) by Polycondensation Method in Solution. FIBRES & TEXTILES in Eastern Europe 2003, 11, 4 (43): 66-70.
  • 6. Lata P, Vinay M, Goel A, Rai V, Rao SE, Singh Barwa M. Packaging Material and Need of Biodegradable Polymers: A Review. Int J Appl Res. 2017; 3(7): 886-896.
  • 7. Rydzkowski T, Borowski G, Szczypiński M, Klepka T, Kumar Thakurd V, Wróblewska-Krepsztula J. Recent Progress in Biodegradable Polymers and Nanocomposite Based Packaging Materials for Sustainable Environment. Int J Polym Anal Ch. 2018; 23(4): 383-395.
  • 8. Mikołajczyk T, Król P, Boguń M, Krucińska I, Szparaga G, Rabiej S. Biodegradable Fibrous Materials Based on Copolymers of Lactic Acid Obtained by Wet Spinning. FIBRES & TEXTILES in Eastern Europe 2013; 21, 3(99): 36-41.
  • 9. Madhavan Nampoothiri K, Rajendran Nair N, Pappy John R. Bioresource an Overview of the Recent Developments in Poly(Lactic Acid) (PLA). Research Technology 2010; 101: 8493-8501.
  • 10. Comaniţă E-D, Ghinea C, Hlihor RM, Simion IM, Smaranda C, Favier L, et al. Challenges and Opportunities in Green Plastic: An Assessment Using the Electre Decision-Aid Method. Environ Eng Manag J. 2015; 14(3): 689-702.
  • 11. Torres A, Ilabaca E, Rojas A, Rodríguez F, Galotto MJ, Guarda A, et al. Effect of Processing Conditions on the Physical, Chemical and Transport Properties of Polylactic Acid Films Containing Thymol Incorporated by Supercritical Impregnation. Eur Polym J. 2017; 89: 195-210.
  • 12. Alvarado N, Romero J, Torres A, Lopez de Dicastillo C, Rojas A, Galotto M J, Guarda A. Supercritical Impregnation of Thymol in Poly(Lactic Acid) Filled with Electrospun Poly(Vinyl Alcohol)-Cellulose Nanocrystals Nanofibres: Development An Active Food Packaging Material. J Food Eng. 2018; 217: 1-10.
  • 13. Milovanovic S, Hollermann G, Errenst C, Pajnik J, Frerich S, Kroll S, et al. Supercritical CO2 Impregnation of PLA/PCL Films with Natural Substances for Bacterial Growth Control in Food Packaging. Food Res Int. 2018; 107: 486-495.
  • 14. Villegas C, Torres A, Rios M, Rojas A, Romero J, López de Dicastillo C, et al. Supercritical Impregnation of Cinnamaldehyde into Polylactic Acid as a Route to Develop Antibacterial Food Packaging Materials. Food Res Int. 2017; 99: 650-659.
  • 15. Ramos M, Jiménez A, Peltzer M, Garrigós M C. Characterization and Antimicrobial Activity Studies of Polypropylene Films with Carvacrol and Thymol for Active Packaging. J Food Eng. 2012; 109: 513-519.
  • 16. Riella KR, Marinho RR, Santos JS, Pereira-Filho RN, Cardoso JC, Albuquerque-Junior RLC, Thomazzi SM. Anti-Inflammatory and Cicatrizing Activities of Thymol, Amonoterpene of the Sssential oil from Lippia Gracilis, In Rodents. J. Ethnopharmacol. 2012; 143: 656-663.
  • 17. Falcone P, Speranza B, Del Nobile M A, Corbo MR, Sinigaglia M. A Study On The Antimicrobial Activity Of Thymol Intended As A Natural Preservative. J Food Prot. 2005; 68: 1664-1670.
  • 18. Valero M, Frances E. Synergistic Bactericidal Effect of Carvacrol, Cinnamaldehyde or Thymol and Refrigeration to Inhibit Bacillus Cereus in Carrot Broth. Food Microbiol. 2006; 23: 68-73.
  • 19. Del Nobile MA, Conte A, Incoronato AL, Panza O. Antimicrobial Efficacy and Release Kinetics of Thymol from Zein Films. J Food Eng. 2008; 89: 57-63.
  • 20. Lauw SJ, Zhong C, Webster RD. Studies on the Electrochemical Reduction and Coupled Homogeneous Reactions of Cinnamaldehyde in Acetonitrile. J Electroanal Chem. 2016; 779: 220-228.
  • 21. Kahkonen MP, Hopia AI, Vuorela HJ, Rauha J-P, Pihlaja K, Kujala TS, et al. Antioxidant Activity of Plant Extracts Containing Phenolic Compounds. J Agric Food Chem. 1999; 47: 3954-3962.
  • 22. Rice-Evans C-A, Miller NJ, Bolwell PG, Bramley PM, Pridham JB. The Relative Antioxidant Activities of Plant-Derived Polyphenolic Flavonoids. Free Radical Res.1995; 22: 375-383.
  • 23. Rice-Evans CA, Miller NJ, Paganga G. Antioxidant Properties of Phenolic Compounas. Trends in Plant Science 1997; 2(4): 152-159.
  • 24. Xu D-P, Li Y, Meng X, Zhou T, Zhou Y, Zheng J, et al. Natural Antioxidants in Foods and Medicinal Plants: Extraction, Assessment and Resources. Int J Mol Sci. 2017; 8: 96.
  • 25. Dai J, Mumper RJ. Plant Phenolics: Extraction, Analysis and Their Antioxidant and Anticancer Properties. Molecules 2010; 15: 7313-7352.
  • 26. Lesjak M, Beara I, Simin N, Pintać D, Majkić T, Bekvalac K, et al. Antioxidant and Anti-Inflammatory Activities of Quercetin and Its Derivatives. J Funct Foods. 2018; 40: 68-75.
  • 27. Ratha P, Jhon D-Y. Increase of Rutin, Quercetin, and Antioxidant Activity during Germinated Buckwheat (Fagopyrum esculentum Moench) Fermentation. Ferment Technol. 2017; 6: 2.
  • 28. Yanga J, Guoa J, Yuanb J. In Vitro Antioxidant Properties of Rutin. LWT 2008; 41: 1060-1066.
  • 29. Mazimba O, Nana F, Kuete V, Singh G S. Xanthones and Anthranoids from the Medicinal Plants of Africa. In: Kuete V, editor. Medicinal Plant Research in Africa. Pharmacology and Chemistry. London: Elsevier 2013; p. 393-434.
  • 30. Masek A, Chrzescijanska E, Latos M, Zaborski M, Podsędek A. Antioxidant and Antiradical Properties of Green Tea Extract Compounds. Int. J Electrochem Sci. 2017; 12: 6600-6610.
  • 31. Mclellan MR, Lind LR, Kime RW. Hue Angle Determinations and Statistical Analysis for Multiquadrant Hunter L,A,B Data. J Food Quality 1995; 18: 235-240.
  • 32. Yahyaoui M, Gordobil O, Díaz R H, Abderrabba M, Labidi J. Development of Novel Antimicrobial Films Based on Poly(Lactic Acid) and Essential Oils. React Funct Polym. 2016; 109: 1-8.
  • 33. Farah S, Anderson DG, Langer R. Physical and Mechanical Properties of PLA, and Their Functions in Widespread Applications – A Comprehensive Review. Adv Drug Deliv Rev. 2016; 107: 367-92.
Uwagi
Opracowanie rekordu ze środków MNiSW, umowa Nr 461252 w ramach programu "Społeczna odpowiedzialność nauki" - moduł: Popularyzacja nauki i promocja sportu (2020).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-7321b486-2b6e-4852-a55c-e3f9b75ba948
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.