PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Multi-unmanned aerial vehicle odor source location based on improved artificial fish swarm algorithm

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
Odor source location technology has important application value in environmental monitoring, safety emergency and search and rescue operations. For example, it can be used in post-disaster search and rescue, detection of hazardous gas leakage, and fire source detection. Existing odor source location methods have problems such as low search efficiency, inability to adapt to complex environments, and inaccurate odor source location. In this study, based on unmanned aerial vehicle technology and using swarm intelligence optimization algorithm, an improved artificial fish swarm algorithm (IAFSA) is proposed by combining curiosity in psychology on the basis of retaining the good optimization performance of the artificial fish swarm algorithm. The algorithm quantifies the curiosity of artificial fish searching high-concentration areas through a model, dynamically adjusts the artificial fish field of vision and step length with the calculated curiosity factor, and avoids the oscillation phenomenon in the later stage of the algorithm. Simulation results show that the IAFSA has a higher success rate and smaller location error. Finally, odor source location experiments were carried out in an indoor physical environment, the feasibility of the odor source location method proposed in this study is verified in actual scenarios.
Rocznik
Strony
art. no. e150329
Opis fizyczny
Bibliogr. 23 poz., rys., tab.
Twórcy
autor
  • China Jiliang University, Hangzhou, China
autor
  • Zhejiang Light Industrial Products Inspection and Research Institute, Hangzhou, China
autor
  • China Jiliang University, Hangzhou, China
Bibliografia
  • [1] K. Langer, “A guide to sensor design for land mine detection,” in EUREL International Conference The Detection of Abandoned Land Mines: A Humanitarian Imperative Seeking a Technical Solution (Conf. Publ. No. 431), 1996, pp. 30–32, doi: 10.1049/cp:19961073.
  • [2] S.S. Bakhder, G. Aldabbagh, N. Dimitriou, S. Alkhuraiji, M. Fadel, and H. Bakhsh, “IoT networks for monitoring and detection of leakage in pipelines,” Int. J. Sensor Netw., vol. 38, no. 4, pp. 241–253, 2022, doi: 10.1504/ijsnet.2022.122559.
  • [3] M. Hutchinson, H. Oh, and W.H. Chen, “A review of source term estimation methods for atmospheric dispersion events using static or mobile sensors,” Inf. Fusion, vol. 36, pp. 130–148, 2017, doi: 10.1016/j.inffus.2016.11.010.
  • [4] Y. Liu, X. Zhao, J. Xu, S. Zhu, and D. Su, “Rapid location technology of odor sources by multi-UAV,” J. Field Robotics, vol. 39, no. 5, pp. 600–616, 2022, doi: 10.1002/rob.22066.
  • [5] J. Monroy, J.R. Ruiz-Sarmiento, F.A. Moreno, F. Melendez-Fernandez, C. Galindo, and J. Gonzalez-Jimenez, “A semantic based gas source localization with a mobile robot combining vision and chemical sensing,” Sensors, vol. 18, no. 12, p. 4174, 2018, doi: 10.3390/s18124174.
  • [6] Q. Feng, H. Cai, Y. Yang, J. Xu, M. Jiang, F. Li, and C. Yan, “An experimental and numerical study on a multi-robot source localization method independent of airflow information in dynamic indoor environments,” Sustain. Cities Soc., vol. 53, p. 101897, 2020, doi: 10.1016/j.scs.2019.101897.
  • [7] K. Gaurav, A. Kumar, and R. Singh, “Single and multiple odor source localization using hybrid nature-inspired algorithm,” S¯adhan¯a, vol. 45, pp. 1–19, 2020, doi: 10.1007/s12046-020-1318-3.
  • [8] M. Geier, O.J. Bosch, and J. Boeckh, “Influence of odour plume structure on upwind flight of mosquitoes towards hosts,” J. Biol., vol. 202, no. 12, pp. 1639–1648, 1999, doi: 10.1242/jeb.202.12.1639.
  • [9] P. Pyk et al., “An artificial moth: Chemical source localization using a robot based neuronal model of moth optomotor anemotactic search,” Auton. Robot., vol. 20, pp. 197–213, 2006, doi: 10.1007/s10514-006-7101-4.
  • [10] S. Zhang and D. Xu, “A survey of biologically inspired chemical plume tracking strategies for single robot in 2-d turbulence dominated flow environments,” in 2011 IEEE/SICE International Symposium on System Integration (SII), 2011, pp. 348–353, doi: 10.1109/sii.2011.6147472.
  • [11] W. Li, J.A. Farrell, and R.T. Card, “Tracking of fluid-advected odor plumes: strategies inspired by insect orientation to pheromone,” Adapt. Behav., vol. 9, no. 3–4, pp. 143–170, 2001, doi: 10.1177/10597123010093003.
  • [12] R.A. Russell, D. Thiel, R. Deveza, and A. Mackay-Sim, “A robotic system to locate hazardous chemical leaks,” in Proceedings of 1995 IEEE International Conference on Robotics and Automation, 1995, pp. 556–561, doi: 10.1109/robot.1995.525342.
  • [13] M. Vergassola, E. Villermaux, and B.I. Shraiman, “’Infotaxis’ as a strategy for searching without gradients,” Nature, vol. 445, no. 7126, pp. 406–409, 2007, doi: 10.1038/nature05464.
  • [14] W. Li, J.A. Farrell, S. Pang, and R.M. Arrieta, “Moth-inspired chemical plume tracing on an autonomous underwater vehicle,” IEEE Trans. on Robot., vol. 22, no. 2, pp. 292–307, 2006, doi: 10.1109/tro.2006.870627.
  • [15] A.J. Lilienthal, M. Reggente, M. Trincavelli, J.L. Blanco, and J. Gonzalez, “A statistical approach to gas distribution modelling with mobile robots-the kernel dm+ v algorithm,” in 2009 IEEE/RSJ International Conference on Intelligent Robots and Systems, 2009, pp. 570–576, doi: 10.1109/iros.2009.5354304.
  • [16] O. Alvear, N.R. Zema, E. Natalizio, and C.T. Calafate, “Using UAV-based systems to monitor air pollution in areas with poor accessibility,” J. Adv. Transp., vol. 2017, p. 8204353, 2017, doi: 10.1155/2017/8204353.
  • [17] G. Ferri, E. Caselli, V. Mattoli, A. Mondini, B. Mazzolai, and P. Dario, “Explorative particle swarm optimization method for gas/odor source localization in an indoor environment with no strong airflow,” in 2007 IEEE International Conference on Robotics and Biomimetics (ROBIO), 2007, pp. 841–846, doi: 10.1109/robio.2007.4522272.
  • [18] Q.H. Meng, W.X. Yang, Y. Wang, and M. Zeng, “Multi-robot odor-plume tracing in indoor natural airflow environments using an improved ACO algorithm,” in 2010 IEEE International Conference on Robotics and Biomimetics, 2010, pp. 110–115, doi: 10.1109/robio.2010.5723312.
  • [19] D. Zarzhitsky, D. Spears, D. Thayer, and W. Spears, “Agent-based chemical plume tracing using fluid dynamics,” in International Workshop on Formal Approaches to Agent-Based Systems, 2004, pp. 146–160, doi: 10.1007/978-3-540-30960-4_10.
  • [20] D. Zarzhitsky, and D.F. Spears, “Swarm approach to chemical source localization,” in 2005 IEEE International Conference on Systems, Man and Cybernetics, 2005, vol. 2, pp. 1435–1440, doi: 10.1109/icsmc.2005.1571348.
  • [21] Z. Zhao and J. Fang, “Robot odor localization based on evolutionary gradient algorithm under the Gaussian plume model,” in Future Information Engineering and Manufacturing Science, 2015, pp. 337–342, doi: 10.1201/b18167-72.
  • [22] F. Pourpanah, R. Wang, C.P. Lim, X.Z. Wang, and D. Yazdani, “A review of artificial fish swarm algorithms: Recent advances and applications,” Artif. Intell. Rev., vol. 56, no. 3, pp. 1867–1903, 2023, doi: 10.1007/s10462-022-10214-4.
  • [23] M. Pantusheva, R. Mitkov, P.O. Hristov, and D. Petrova-Antonova, “Air Pollution Dispersion Modelling in Urban Environment Using CFD: A Systematic Review,” Atmosphere, vol. 13, no. 10, p. 1640, 2022, doi: 10.3390/atmos13101640.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-72c7f2de-da9f-4526-bf90-8be7007e4451
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.