Tytuł artykułu
Treść / Zawartość
Pełne teksty:
Identyfikatory
Warianty tytułu
Języki publikacji
Abstrakty
The large diversity of chemical substances present in air, water, or soil makes it necessary tostudy their mutual impact on the effectiveness of microbiological decomposition ofcontaminants. This publication presents the results of the studies aimed at evaluating the effect of two biogenic heavy metals - zinc and copper - on the phenol biodegradation by the Stenotrophomonas maltophilia KB2 strain. The tests were carried out for concentrations ofmetals significantly exceeding the legally permitted wastewater values: for zinc up to13.3 g·m -3, and copper up to 3.33 g·m -3. In the tested metal concentration range, phenol biodegradation by the S. maltophilia KB2 strain was not significantly influenced by theintroduced dose of zinc. While the presence of copper inhibited both biomass growth andsubstrate degradation. Kinetic data of metal and phenol mixtures were analyzed and very goodcorrelations were obtained for the proposed equations. An equation consistents with the Hanand Levenspiel model was proposed for the system S. maltophilia KB2-phenol-copper, whilean equation consistents with the Kai model for the system St. maltophilia KB2-phenol-zinc. The simultaneous presence of Zn and Cu ions in the culture resulted in a stronger inhibition ofphenol biodegradation.
Rocznik
Tom
Strony
art. no. e64
Opis fizyczny
Bibliogr. 53 poz., rys., tab.
Twórcy
autor
- Institute of Chemical Engineering, Polish Academy of Sciences, Baltycka 5, 44-100 Gliwice, Poland
autor
- Institute of Chemical Engineering, Polish Academy of Sciences, Baltycka 5, 44-100 Gliwice, Poland
autor
- Institute of Chemical Engineering, Polish Academy of Sciences, Baltycka 5, 44-100 Gliwice, Poland
Bibliografia
- 1. Abd Elnabi M.K., Elkaliny N.E., Elyazied M.M., Azab S.H., Elkhalifa S.A., Elmasry S., Mouhamed M.S., Shalamesh E.M., Alhorieny N.A., Abd Elaty A.E., Elgendy I.M., Etman A.E., Saad K.E., Tsigkou K., Ali S.S., Kornaros M., Mahmoud Y.A.-G., 2023. Toxicity of heavy metals and recent advances in their removal: a review. Toxics, 11, 580. DOI: 10.3390/toxics11070580.
- 2. Ahmed S.F., Mofijur M., Nuzhat S., Chowdhury A.T., Rafa N., Uddin Md. A., Inayat A., Mahlia T.M.I., Ong H.C., Chia W.Y., Show P.L., 2021. Recent developments in physical, biological, chemical, and hybrid treatment techniques for removing emerging contaminants from wastewater. J. Hazard. Mater., 416, 125912. DOI: 10.1016/j.jhazmat.2021.125912.
- 3. Alvarado-Gutiérrez M.L., Ruiz-Ordaz N., Galíndez-Mayer J., Curiel-Quesada E., Santoyo-Tepole F., 2020. Degradation kinetics of carbendazim by Klebsiella oxytoca, Flavobacterium johnsoniae, and Stenotrophomonas maltophilia strains. Environ. Sci. Pollut. Res., 27, 28518–28526. DOI: 10.1007/s11356-019-07069-8.
- 4. Amor L., Kennes C., Veiga M.C., 2001. Kinetics of inhibition in the biodegradation of monoaromatic hydrocarbons in the presence of heavy metals. Bioresour. Technol., 78, 181–185. DOI: 10.1016/S0960-8524(00)00182-6.
- 5. Ataei M, Maghsoudi A.S., Hassani S., 2024. Phenol. In: Wexler P. (Ed.), Encyclopedia of toxicology. 4th edition, Academic Press, 521–526. DOI: 10.1016/B978-0-12-824315-2.00168-8.
- 6. Batkhuyag N., Matyakubov B., Mang N.Z.L., Lee T.-J., 2021. Additive inhibitory effects of heavy metals on phenol-utilizing microorganisms. Environ. Eng. Res., 27, 210342. DOI: 10.4491/eer. 2021.342.
- 7. Bibi A., Bibi S., Abu-Dieyeh M., Al-Ghouti M.A., 2023. Towards sustainable physiochemical and biological techniques for the remediation of phenol from wastewater: a review on current applications and removal mechanisms. J. Cleaner Prod., 417, 137810, DOI: 10.1016/j.jclepro.2023.137810.
- 8. Brooke J.S., 2021. Advances in the microbiology of Stenotrophomonas maltophilia. Clin. Microbiol. Rev., 34, e00030-19. DOI: 10.1128/CMR.00030-19.
- 9. Butarewicz A., Rosochacki S.J., Wrzaszcz E., 2019. Toxicity of sewage from industrial wastewater treatment plants. J. Ecol. Eng., 20, 191–199. DOI: 10.12911/22998993/99060.
- 10. Chen S., Sun L., 2023. Screening of efficient phenol-degrading bacteria and analysis of their degradation characteristics. Sustainability, 15, 6788. DOI: 10.3390/su15086788.
- 11. Chen S., Yin H., Tang S., Peng H., Liu Z., Dang Z., 2016. Metabolic biotransformation of copper–benzo[a]pyrene combined pollutant on the cellular interface of Stenotrophomonas maltophilia. Bioresour. Technol., 204, 26–31. DOI: 10.1016/j.biortech.2015.12.068.
- 12. Chen S., Yin H., Ye J., Peng H., Liu Z., Dang Z., Chang J., 2014. Influence of co-existed benzo[a]pyrene and copper on the cellular characteristics of Stenotrophomonas maltophilia during biodegradation and transformation. Bioresour. Technol., 158, 181–187. DOI: 10.1016/j.biortech.2014.02.020.
- 13. Dias P.R.P., Paiva T.O., de Oliveira A.M., de Magalhães J.C., 2022. Biodegradation of phenol by Pseudomonas aeruginosa, Acinetobacter sp. and Stenotrophomonas maltophilia isolated of the sludge activated of a steel industry. Inter. J. Dev. Res., 12, 55571–55574. DOI: 10.37118/ijdr.24409.04.2022.
- 14. Dz.U. 2019 poz. 1311. Rozporządzenie Ministra Gospodarki Morskiej i Żeglugi Śródlądowej z dnia 12 lipca 2019 r. w sprawie substancji szczególnie szkodliwych dla środowiska wodnego oraz warunków, jakie należy spełnić przy wprowadzaniu do wód lub do ziemi ścieków, a także przy odprowadzaniu wód opadowych lub roztopowych do wód lub do urządzeń wodnych. Available at: DOI: https://isap.sejm.gov.pl/isap.nsf/download.xsp/WDU20190001311/O/D20191311.pdf.
- 15. EPA, 2014. Toxic and priority pollutants under the clean water act. Effluent Guidelines. U.S. Environmental Protection Agency (EPA), U.S. Washington.
- 16. Gadipelly C., Pérez-González A., Yadav G.D., Ortiz I., Ibáñez R., Rathod V.K., Marathe K.V., 2014. Pharmaceutical industry wastewater: review of the technologies for water treatment and reuse. Ind. Eng. Chem. Res., 53, 11571–11592. DOI: 10.1021/ie501210j.
- 17. García G., Girón J.A., Yañez J.A., Cedillo M.L., 2023. Stenotrophomonas maltophilia and its ability to form biofilms. Microbiol. Res., 14, 1–20. DOI: 10.3390/microbiolres14010001.
- 18. Gaurav G.K., Mehmood T., Kumar M., Cheng L., Sathishkumar K., Kumar A., Yadav D., 2021. Review on polycyclic aromatic hydrocarbons (PAHs) migration from wastewater. J. Contam. Hydrol., 236, 103715. DOI: 10.1016/j.jconhyd.2020.103715.
- 19. Gąszczak A., Szczyrba E., Szczotka A., Greń I., 2021. Effect of nickel as stress factor on phenol biodegradation by Stenotrophomonas maltophilia KB2. Materials, 14, 6058. DOI: 10.3390/ma14206058.
- 20. Gomathy M., Sabarinathan K.G., 2010. Microbial mechanisms of heavy metal tolerance – A review. Agricultural Reviews, 31, 133–138.
- 21. Gopinath K.P., Kathiravan M.N., Srinivasan R., Sankara arayanan S., 2011. Evaluation and elimination of inhibitory effects of salts and heavy metal ions on biodegradation of Congo red by Pseudomonas sp. Mutant. Bioresour. Technol., 102, 3687–3693. DOI: 10.1016/j.biortech.2010.11.072
- 22. Goutam Mukherjee A., Ramesh Wanjari U., Eladl M.A., El- Sherbiny M., Elsherbini D.M.A., Sukumar A., Kannampuzha S., Ravichandran M., Renu K., Vellingiri B., Kandasamy S., Val- sala Gopalakrishnan A., 2022. Mixed contaminants: occurrence, interactions, toxicity, detection, and remediation. Molecules, 27, 2577. DOI: 10.3390/molecules27082577.
- 23. Guzik U., Greń I., Wojcieszyńska D., Łabużek S., 2009. Isolation and characterization of a novel strain of Stenotrophomonas maltophilia possessing various dioxygenases for monocyclic hy- drocarbon degradation. Braz. J. Microbiol., 40, 285–291.
- 24. Guzik U., Hupert-Kocurek K., Sałek K., Wojcieszyńska D. 2013. Influence of metal ions on bioremediation activity of protocatechuate 3,4-dioxygenase from Stenotrophomonas maltophilia KB2. World J. Microbiol. Biotechnol., 29, 267–273. DOI: 10.1007/s11274-012-1178-z.
- 25. Hussain A., Kumari R., Sachan S.G., Sachan A., 2021. Biological wastewater treatment technology: advancement and drawbacks. Microb. Ecol. Wastewater Treat. Plants, 175-192. DOI: 10.1016/B978-0-12-822503-5.00002-3.
- 26. Kai E.X., Wan Johari W.L., Habib S., Adeela N., Ahmad S.A., Shukor M.Y., 2020. The growth of Rhodococcus Sp. on diese fuel under the effect of heavy metals and different concentrations of zinc. Adv. Polar Sci., 31, 132–136. DOI: 10.13679/j.advps.2019.0043.
- 27. Khalidi-Idrissi A, Madinzi A, Anouzla A, Pala A, Mouhir L, Kadmi Y, Souabi S., 2023. Recent advances in the biological treatment of wastewater rich in emerging pollutants produced by pharmaceutical industrial discharges. Int. J. Environ. Sci. Technol. 20, 11719–11740. DOI: 10.1007/s13762-023-04867-z.
- 28. Khan N.A., López-Maldonado E.A., Majumder A., Singh S., Varshney R., López J.R., Méndez P.F., Ramamurthy P.C., Khan M.A., Khan A.H., Mubarak N.M., Amhad W., Shamshuddin S.Z.M., Aljundi I.H., 2023. A state-of-art-review on emerging contaminants: environmental chemistry, health effect, and modern treatment methods. Chemosphere, 344, 140264. DOI: 10.1016/j.chemosphere.2023.140264.
- 29. Manogaran M., Othman A.R., Shukor M.Y., Halmi M.I.E., 2019. Modelling the effect of heavy metal on the growth rate of an SDS-degrading Pseudomonas sp. Strain DRY15 from antarctic soil. Biorem. Sci. Technol. Res., 7, 41–45. DOI: 10.54987/bstr.v7i1.463.
- 30. Maziotis A., Molinos-Senante M., 2023. A comprehensive ecoefficiency analysis of wastewater treatment plants: estimation of optimal operational costs and greenhouse gas emissions. Water Res., 243, 120354, DOI: 10.1016/j.watres.2023.120354.
- 31. Miglani R., Parveen N., Kumar A., Ansari M.A., Khanna S., Rawat G., Panda A.K., Bisht S.S., Upadhyay J., Ansari M.N., 2022. Degradation of xenobiotic pollutants: An environmentally sustainable approach. Metabolites, 12, 818. DOI: 10.3390/metabo12090818.
- 32. Mitra S., Chakraborty A.J., Tareq A.M., Emran T.B., Nainu F., Khusro A., Idris A.M., Khandaker M.U., Osman H., Alhumaydhi F.A., Simal-Gandara J., 2022. Impact of heavy metals on the environment and human health: Novel therapeutic insights to counter the toxicity. J. King Saud Univ. Sci., 34, 101865. DOI: 10.1016/j.jksus.2022.101865.
- 33. Mohd A., 2022. Presence of phenol in wastewater effluent and its removal: an overview. Int. J. Environ. Anal. Chem., 102, 1362–1384. DOI: 10.1080/03067319.2020.1738412.
- 34. Nakamura Y., Sawada T., 2000. Biodegradation of phenol in the presence of heavy metals. J. Chem. Technol. Biotechnol., 75, 137–142. DOI: 10.1002/(SICI)1097- 4660(200002)75:2<137::AID-JCTB194>3.0.CO;2-0.
- 35. Nlemolisa O.R., Nwanyanwu C.E., Akujobi C.O., Ihenetu F.C., Nwokorie R.C., Obasi C.C., Kemka U.N., Uzoho K.H., Nwoke M.C., 2020. Toxicity of binary mixtures of phenol, zinc, and cadmium to yeast strains isolated from hydrocar- bon impacted soil. OALib, 7, e6201, 1–15. DOI: 10.4236/oalib.1106201.
- 36. Nowak A., Wasilkowski D., Mrozik A., 2022. Implications of bacterial adaptation to phenol degradation under suboptimal culture conditions involving Stenotrophomonas maltophilia KB2 and Pseudomonas moorei KB4. Water, 14, 2845. DOI: 10.3390/w14182845.
- 37. Panigrahy N., Priyadarshini A., Sahoo M.M., Verma A.K., Daverey A., Sahoo N.K., 2022. A comprehensive review on ecotoxicity and biodegradation of phenolics: recent progress and future outlook. Environ. Technol. Innovation, 27, 102423. DOI: 10.1016/j.eti.2022.102423.
- 38. Priyadarshini A., Mishra S., Sahoo M.M., Rout P.R., Sahoo N.K., 2022. Effect of nutrient and culture conditions on enhanced biodegradation of phenolic pollutants: a review on recent development and future prospective. Environ. Qual. Manage., 32, 161–176. DOI: 10.1002/tqem.21934.
- 39. Priyadarshini A., Sahoo M.M., Raut P.R., Mahant B., Sahoo N.K., 2021. Kinetic modelling and process engineering of phenolics microbial and enzymatic biodegradation: a current outlook and challenges. J. Water Process Eng., 44, 102421. DOI: 10.1016/j.jwpe.2021.102421.
- 40. Saidulu D., Gupta B., Gupta A.K., Ghosal P.S., 2021. A review on occurrences, eco-toxic effects, and remediation of emerging contaminants from wastewater: special emphasis on biological treatment based hybrid systems. J. Environ. Chem. Eng., 9, 105282, DOI: 10.1016/j.jece.2021.105282.
- 41. Sharma M., Agarwal S., Agarwal Malik R., Kumar G., Pal D.B., Mandal M., Sarkar A., Bantun F., Haque S., Singh P., Srivastava N., Gupta V.K., 2023. Recent advances in microbial engineering approaches for wastewater treatment: a review. Bioengineered, 14, 2184518. DOI: 10.1080/21655979.2023.2184518.
- 42. Shukor M.Y., Gusmanizar N., Rusnam, 2018. Modelling the effect of heavy metals on the growth rate of Enterobacter sp. strain Neni-13 on SDS. J. Environ. Microbiol. Toxicol., 6, 24–27. DOI: 10.54987/jemat.v6i1.403.
- 43. Silva A.S., Camargo F.A.O., Andreazza R., Seminoti Jacques R.J., Baldoni D.B., Bento F.M., 2012. Enzymatic activity of catechol 1,2-dioxygenase and catechol 2,3-dioxygenase produced by Gordonia polyisoprenivorans. Quim. Nova, 35, 1587–1592. DOI: 10.1590/S0100-40422012000800018.
- 44. Štefanac T., Grgas D., Landeka Dragičević T., 2021. Xenobiotics – division and methods of detection: a review. J. Xenobiot., 11, 130–141. DOI: 10.3390/jox11040009
- 45. Subramaniam K., Ahmad S.A., Convey P., Shaharuddin N.A., Khalil K.A., Tengku-Mazuki T.A., Gomez-Fuentes C., Zulkharnain A., 2021. Statistical assessment of phenol biodegradation by a metal-tolerant binary consortium of indigenous antarctic bacteria. Diversity. 13, 643. DOI: 10.3390/d13120643.
- 46. Syed Z., Sogani M., Rajvanshi J., Sonu K., 2023. Microbial biofilms for environmental bioremediation of heavy metals: a review. Appl. Biochem. Biotechnol., 195, 5693–5711. DOI: 10.1007/s12010-022-04276-x.
- 47. Tang H., Liu Y., Liu X., Zhang A., Yang R., Han Y., Liu P., He H.B., Li Z., 2023. Regulation methods and enhanced mechanism on the efficient degradation of aromatics in biochemical treatment system of coal chemical wastewater. J. Environ. Manage., 348, 119358. DOI: 10.1016/j.jenvman.2023.119358.
- 48. Tutić A., Miloloža M., Cvetnić M,. Martinja V., Furač L., Markić M., Ukić Š, Bolanča T., Kučić Grgić D., 2023. An overview of coking wastewater characteristics and treatment technologies. Kem. Ind., 72, 349–358. DOI: 10.15255/KUI.2022.080.
- 49. Villegas L.G.C., Mashhadi N., Chen M., Mukherjee D., Taylor K.E., Biswas N., 2016. A short review of techniques for phenol removal from wastewater. Curr. Pollut. Rep., 2, 157–167. DOI: 10.1007/s40726-016-0035-3.
- 50. Wu X., Zhang C., An H., Li M., Pan X., Dong F., Zheng Y., 2021. Biological removal of deltamethrin in contaminated water, soils, and vegetables by Stenotrophomonas maltophilia XQ08. Chemosphere, 279, 130622. DOI: 10.1016/j.chemosphere.2021.130622.
- 51. Zhang J., Bing W., Hu T., Zhou X., Liang J., Li Y., 2023. Enhanced biodegradation of phenol by microbial collaboration: resistance, metabolite utilization, and pH stabilization. Environ. Res., 238, Part 2, 117269. DOI: 10.1016/j.envres.2023.117269.
- 52. Zhang J., Zhou X., Zhou Q., Zhang J., Liang J., 2022. A study of highly efficient phenol biodegradation by a versatile Bacillus cereus ZWB3 on aerobic condition. Water Sci. Technol., 86, 355–366. DOI: 10.2166/wst.2022.209.
- 53. Zhao T., Gao Y., Yu T., Zhang Y., Zhang Z., Zhang L., Zhang L., 2021. Biodegradation of phenol by a highly tolerant strain Rhodococcus ruber C1: biochemical characterization and comparative genome analysis. Ecotoxicol. Environ. Saf., 208, 111709. DOI: 10.1016/j.ecoenv.2020.111709
Uwagi
Opracowanie rekordu ze środków MNiSW, umowa nr POPUL/SP/0154/2024/02 w ramach programu "Społeczna odpowiedzialność nauki II" - moduł: Popularyzacja nauki (2025)
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-71beb000-80f1-47ee-ba72-3beab9c66091
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.