PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Adsorption of Mercury and Zinc in Agricultural Soils by Sphagneticola trilobata

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
Given the imminent deterioration of environmental quality, the accumulation of heavy metals in agricultural soil is one of the main concerns worldwide. Therefore, this research aimed to evaluate the adsorption potential of mercury and zinc by Sphagneticola trilobata. After 60 days, the distribution of heavy metals in the roots and the leaves of the plants was determined. As a result, the plant adsorbed mercury between 43.49 and 59.22%, and zinc between 32.68 and 64.37%. According to the bioconcentration and translocation factors of Sphagneticola trilobata obtained in the present work, the phytostabilizing capacity of mercury and zinc is like Eichhornia crassipes and Sorghum bicolor.
Słowa kluczowe
Rocznik
Strony
230--235
Opis fizyczny
Bibliogr. 20 poz., rys., tab.
Twórcy
autor
  • Escuela Superior Politécnica Agropecuaria de Manabí Manuel Félix López, ESPAM - MFL, Calceta, Ecuador
  • Escuela Superior Politécnica Agropecuaria de Manabí Manuel Félix López, ESPAM - MFL, Calceta, Ecuador
  • Escuela Superior Politécnica Agropecuaria de Manabí Manuel Félix López, ESPAM - MFL, Calceta, Ecuador
autor
  • Escuela Superior Politécnica Agropecuaria de Manabí Manuel Félix López, ESPAM - MFL, Calceta, Ecuador
  • Universidad Nacional Mayor de San Marcos, Lima, Perú
Bibliografia
  • 1. Amdoun R., Bendifallah N., Sahli F., Moustafa K., Hefferon K., Makhzoum A., Khelifi L. 2020. Improving zinc phytoremediation characteristics in Salix pedicellata with a new acclimation approach. International Journal of Phytoremediation, 1–10. DOI: 10.1080/15226514.2019.1708862
  • 2. Arunakumara K., Walpola B., Yoon M. 2015. Bioaugmentation-assisted phytoextraction of Co, Pb and Zn: an assessment with a phosphate-solubilizing bacterium isolated from metal-contaminated mines of Boryeong Area in South Korea. Biotechnology, Agronomy, Society and Environment, 19(2), 143–152.
  • 3. Bassey E., Ajayi I., Ugbaja A. 2018. Pb, Zn, Cu, Ni and Co Contents of water and sediments, in relation to phytoremediation and translocation by water hyacinth (Eichhornia crassipes Mart. Solms.) at some creeks of the Great Kwa River, Southeastern Nigeria. International Journal of Environment and Pollution Research, 6(2), 16–37.
  • 4. Chattopadhyay S., Fimmen R., Yates B., Lal V., Randall P. 2012. Phytoremediation of Mercury- and Methyl Mercury-Contaminated Sediments by Water Hyacinth (Eichhornia crassipes). International Journal of Phytoremediation, 14(2), 142–161. DOI: 10.1080/15226514.2010.525557
  • 5. Furini A., Manara A., DalCorso G. 2015. Editorial: Environmental phytoremediation: plants and microorganisms at work. Frontiers in Plant Science, 6. https://www.frontiersin.org/article/10.3389/fpls.2015.00520
  • 6. Khalid A., Berhan A., Graham B. 2018. Phytoremediation of Pb and Cd contaminated soils by using sunflower (Helianthus annuus) plant. Annals of Agricultural Sciences, 63(1). https://www.sciencedirect.com/science/article/pii/S0570178318300174
  • 7. Kokyo O., Sachiko T., Sri W., Hardita L., Retno R., Irfan D. 2016. Phytoremediation of mercury contaminated soils in a smallscale artisanal gold mining region of Indonesia. International Journal of Biosciences and Biotechnology, 3(1). https://ojs.unud.ac.id/index.php/jbb/article/view/18672
  • 8. Li C., Xiao B., Wang Q., Yao S., Wu J. 2014. Phytoremediation of Zn- and Cr-contaminated soil using two promising energy grasses. Water, Air, & Soil Pollution, 225(7). DOI: 10.1007/s11270-014-2027-5
  • 9. Liu Z., Chen B., Wang L., Urbanovich O., Nagorskaya L., Li X., Tang L. 2020. A review on phytoremediation of mercury contaminated soils. Journal of Hazardous Materials. DOI: 10.1016/j.jhazmat.2020.123138
  • 10. Liu Z., Wang L., Ding S., Xiao H. 2018. Enhancer assisted-phytoremediation of mercury-contaminated soils by Oxalis corniculata L., and rhizosphere microorganism distribution of Oxalis corniculata L. Ecotoxicology and Environmental Safety, 160, 171–177. DOI: 10.1016/j.ecoenv.2018.05.041
  • 11. Lominchar M., Sierra M.J., Millán R. 2015. Accumulation of mercury in Typha domingensis under field conditions. Chemosphere, 119. 994–999. DOI: 10.1016/j.chemosphere.2014.08.085
  • 12. Marrugo J., Durango J., Pinedo J., Olivero J., Díez S. 2015. Phytoremediation of mercury-contaminated soils by Jatropha curcas. Chemosphere, 127. 58–63.
  • 13. Ranieri E., Moustakas K., Barbafieri M., Ranieri A., Herrera J., Petrella A., Tommasi F. 2019. Phytoextraction technologies for mercury- and chromium-contaminated soil: a review. Journal of the Society of Chemical Industry. DOI: 10.1002/jctb.6008.
  • 14. Rusnam, Efrizal. 2016. The Ability of Water Plants to Reduce the Level of Mercury Pollution in Water Quality in Irrigation. International Journal of Waste Resources, 6. https://www.longdom.org/open-access/the-ability-of-water-plants-to-reduce-the-level-of-mercury-pollution-inwater-quality-in-irrigation-2252-5211-1000225.pdf
  • 15. Smolinska B., Szczodrowska A. 2016. Antioxidative response of Lepidium sativum L. during assisted phytoremediation of Hg contaminated soil. New Biotechnology. DOI: 10.1016/j.nbt.2016.07.004.
  • 16. Sun L., Wang Z., Wang Y., Xu J., He X. 2019. Anti-proliferative and anti-neuroinflammatory eudesmanolides from Wedelia (Sphagneticola trilobata (L.) Pruski). Fitoterapia, 104452. DOI: 10.1016/j.fitote.2019.104452
  • 17. Tiodar E., Vacar C., Podar D. 2021. Phytoremediation and Microorganisms-Assisted Phytoremediation of Mercury-Contaminated Soils: Challenges and Perspectives. Int. J. Environ. Res. Public Health, 18. DOI: 10.3390/ijerph18052435
  • 18. Tripti M., Vimal C. 2019. Phytoremediation of Red Mud Deposits Through Natural Succession. Elsevier Inc, 409–424.
  • 19. Vimal C., Singh D. 2020. Phytoremediation Potential of Perennial Grasses. Elsevier Inc.
  • 20. Yan A., Wang Y., Tan S., Yusof M., Ghosh S., Chen Z. 2020. Phytoremediation: A Promising Approach for Revegetation of Heavy Metal-Polluted Land. Frontiers in Plant Science, 11. https://www.frontiersin.org/article/10.3389/fpls.2020.00359
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-6dcf88d1-3fc5-44fd-b55d-cadc9b313bbd
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.