PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Analysis of polymer burnout during the start-up process of the MCFC stack

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
The paper contains a comprehensive summary of the current state of research on the polymer burnout process in molten carbonate fuel cells (MCFC). Outline information discussing both MCFC fundamentals and the start-up process are given along with references to the literature. The main part of the article presents the result of an on-site experiment regarding polymer burnout performed on an MCFC stack. The outcomes are discussed and conclusions are clearly stated.
Słowa kluczowe
Rocznik
Strony
149--159
Opis fizyczny
Bibliogr. 25 poz., fot., rys., tab., wykr.
Twórcy
  • Warsaw University of Technology, Faculty of Power and Aeronautical Engineering, Institute of Heat Engineering, 21 Nowowiejska street, 00-665 Warsaw, Poland
  • Warsaw University of Technology, Faculty of Power and Aeronautical Engineering, Institute of Heat Engineering 21 Nowowiejska street, 00-665 Warsaw, Poland
  • Warsaw University of Technology, Faculty of Power and Aeronautical Engineering, Institute of Heat Engineering, 21 Nowowiejska street, 00-665 Warsaw, Poland
Bibliografia
  • [1] European Commission, “REPowerEU: Joint European Action for more affordable, secure and sustainable energy,” Press Release, no. March, 2022.
  • [2] Ministerstwo Klimatu i Środowiska, “Polityka Energetyczna Polski do 2040 r.,” 2021.
  • [3] E. Möller and W. Brack, The encyclopedia of U-boats: From 1904 to the Present. Greenhill Books, 2004.
  • [4] S. Obara, “Resilience of the microgrid with a core substation with 100% hydrogen fuel cell combined cycle and a general substation with variable renewable energy,” Appl. Energy, vol. 327, p. 120060, Dec. 2022, doi: 10.1016/J.APENERGY.2022.120060.
  • [5] P. Fragiacomo, F. Piraino, M. Genovese, O. Corigliano, and G. De Lorenzo, “Strategic Overview on Fuel Cell-Based Systems for Mobility and Electrolytic Cells for Hydrogen Production,” Procedia Comput. Sci., vol. 200, pp. 1254-1263, Jan. 2022, doi: 10.1016/J.PROCS.2022.01.326.
  • [6] J. Milewski, K. Świrski, M. Santarelli, and P. Leone, Advanced Methods of Solid Oxide Fuel Cell Modeling. 2010.
  • [7] T. A. Barckholtz, K. M. Taylor, S. Narayanan, S. Jolly, and H. Ghezel-Ayagh, “Molten carbonate fuel cells for simultaneous CO2 capture, power generation, and H2 generation,” Appl. Energy, vol. 313, 2022, doi: 10.1016/j.apenergy.2022.118553.
  • [8] NETL, “Seventh Edition Fuel Cell Handbook,” 2004.
  • [9] J. Larminie and A. Dicks, Fuel cell systems explained: Second edition. Wiley, 2013.
  • [10] B. Bosio, P. Costamagna, F. Parodi, and B. Passalacqua, “Industrial experience on the development of the molten carbonate fuel cell technology,” J. Power Sources, vol. 74, no. 2, 1998, doi: 10.1016/S0378-7753(98)00052-4.
  • [11] A. L. Dicks, “Molten carbonate fuel cells,” Curr. Opin. Solid State Mater. Sci., vol. 8, no. 5, 2004, doi: 10.1016/j.cossms.2004.12.005.
  • [12] L. Duan, K. Xia, T. Feng, S. Jia, and J. Bian, “Study on coal-fired power plant with CO2 capture by integrating molten carbonate fuel cell system,” Energy, vol. 117, 2016, doi: 10.1016/j.energy.2016.03.063.
  • [13] L. Zhou et al., “A study on the start-up and performance of a kW-class molten carbonate fuel cell (MCFC) stack,” Electrochim. Acta, vol. 51, no. 26, 2006, doi: 10.1016/j.electacta.2006.03.007.
  • [14] T. Ishikawa and H. Yasue, “Start-up, testing and operation of 1000 kW class MCFC power plant,” J. Power Sources, vol. 86, no. 1-2, pp. 145-150, Mar. 2000, doi: 10.1016/S0378-7753(99)00446-2.
  • [15] “Instrukcja obsługi urządzenia FCP TNS 5000.” Fuel Cell Poland sp. z o.o., 2021.
  • [16] J. J. Seo, S. T. Kuk, and K. Kim, “Thermal decomposition of PVB (polyvinyl butyral) binder in the matrix and electrolyte of molten carbonate fuel cells,” J. Power Sources, vol. 69, no. 1-2, 1997, doi: 10.1016/s0378-7753(97)02570-6.
  • [17] F. Kitson, B. Larsen, and C. McEwen, Gas Chromatography and Mass Spectrometry A Practical Guide. 1996.
  • [18] M. Klugmann, “Pomiar składu gazu metodą chromatografii gazowej.”
  • [19] J. de Zeeuw, “Impact of GC Parameters on The Separation, Part 5: Choice of Column Length,” Separation Science, 2014. www.sepscience.com.
  • [20] S. W. Lewis, “Chromatography: Basic Principles,” Encycl. Forensic Sci. Third Ed., pp. 558–565, Jan. 2023, doi: 10.1016/B978-0-12-823677-2.00080-5.
  • [21] C. A. Cramers, H. G. Janssen, M. M. Van Deursen, and P. A. Leclercq, “High-speed gas chromatography: an overview of various concepts,” J. Chromatogr. A, vol. 856, no. 1–2, pp. 315–329, Sep. 1999, doi: 10.1016/S0021-9673(99)00227-7.
  • [22] K. Robards, “GAS CHROMATOGRAPHY | Overview,” Encycl. Anal. Sci. Second Ed., pp. 1–7, Jan. 2005, doi: 10.1016/B0-12-369397-7/00217-X.
  • [23] S. Instruments, “GC Columns.” https://www.srigc.com/home/product_detail/gc-columns.
  • [24] K. Hierasimczyk, “Chemia Analityczna,” Chem. Analityczna, 2002.
  • [25] L. Huaxin, Z. Li, H. Changqing, K. Lianying, Z. Enjun, and Y. Baolian, “A study on the dependence of the micro-pore configurations on the volatilization and the burn processes of the organic compounds in the matrix of molten carbonate fuel cells,” Electrochim. Acta, vol. 47, no. 9, 2002, doi: 10.1016/S0013-4686(01)00833-7.
Uwagi
PL
Opracowanie rekordu ze środków MEiN, umowa nr SONP/SP/546092/2022 w ramach programu "Społeczna odpowiedzialność nauki" - moduł: Popularyzacja nauki i promocja sportu (2022-2023).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-6d9dd527-3c19-4f16-889e-59499e429ae9
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.