PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Processing and Performance of Blended Biodiesel Produced from Microalgae Pediastrum Boryanum

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
In this present study, biodiesel was synthesized as per ASTM method by using algae as a raw material, which in the environment is considered as being a harmful waste and of a nature that blooms in ponds, lakes and reservoirs. In order to improve fuel quality, the transesterification process was carried out in this study so as to remove fatty acids and thereafter, analyze several fuel parameters of the biodiesel were determined. The calorific value of the biodiesel and its specific gravity was 42660 kJ/kg and 0.803 g/cm3 respectively. The viscosity of the sample was found to be 1.99. The cetane number of diesel fuel ranged from 40 to 55 and for the biodiesel it was found to be 47. The flashpoint and firepoint of the sample was recorded as 80°C and 94°C respectively. The conclusion is that it is worthy to mention that this process does not require high-end technology; hence, it could be used in the energy generation process in remote areas and as an alternative resource, as well.
Słowa kluczowe
Rocznik
Tom
Strony
243--262
Opis fizyczny
Bibliogr. 41 poz., rys., tab.
Twórcy
  • Department of Mechanical Engineering, Boston University, United States
  • Humanitas Institute, Federal University of Rio Grande do Norte, Natal/RN, Brazil
  • Humanitas Institute, Federal University of Rio Grande do Norte, Natal/RN, Brazil
  • Department of Arts, Federal University of Rio Grande do Norte, Natal/RN, Brazil
  • Department of Oceanography and Limnology, Federal University of Rio Grande do Norte, Natal/RN, Brazil
  • Department of Arts, Federal University of Rio Grande do Norte, Natal/RN, Brazil
  • Department of Arts, Federal University of Rio Grande do Norte, Natal/RN, Brazil
  • Department of Arts, Federal University of Rio Grande do Norte, Natal/RN, Brazil
  • Department of Arts, Federal University of Rio Grande do Norte, Natal/RN, Brazil
  • Department of Arts, Federal University of Rio Grande do Norte, Natal/RN, Brazil
  • Department of Oceanography and Limnology, Federal University of Rio Grande do Norte, Natal/RN, Brazil
  • Faculty of Philosophy, State University of Ceará, Limoeiro do Norte/CE, Brazil
  • Department of Materials Engineering, Federal University of Rio Grande do Norte, Natal/RN, Brazil
Bibliografia
  • Adenle, AA., Haslam, GE., Lee, L. (2013). Global assessment of research and develop-ment for algae biofuel production and its potential role for sustainable development in developing countries. Energy Policy, 61, 182-195. DOI: 10.1016/j.enpol. 2013.05.088
  • Ahmad, AL., Yasin, NHM., Derek, CJC. & Lim, JK. (2011). Microalgae as a sustainable energy source for biodiesel production: a review. Renew Sustain Energy Rev., 15, 584-93. DOI: 10.1016/j.rser.2010.09.018
  • Amin, A., Gadallah, A, El-Morsi, AK., El-Ibiari, NN., El-Diwani, GI. (2016). Experimental and empirical study of diesel and castor biodiesel blending effect, on kinematic viscosity, density and calorific value. Egyptian Journal of Petroleum, 25, 509-514. DOI: 10.1016/j.ejpe.2015.11.002
  • Arain, S., Sherazi, STH., Bhanger, MI., Talpur, FN., Maheshar, SA. (2009). Oxidative stability assessment of bauhinia purpurea seed oil in comparison to two conventional vegetable oils by differential scanning calorimetry and rancimat methods. Thermochimica Acta, 484, 1-3. DOI: 10.1016/j.tca.2008.11.004
  • B.P. statistical Review of World Energy, London, United Kingdom. Available from: www.bp.com/statisticalreview, June 2012.
  • Berman, P., Nizri, S., Wiesman, Z. (2011). Castor Biodiesel and its blends as alternative. Biomass & Bioenergy, 35, 2861-2866. DOI: 10.1016/j.biombioe.2011.03.024
  • Bojan, SG., Chelladurai, S. & Durairaj, SK. (2011). Batch type synthesis of high free fatty acid jatropha curcus oil biodiesel – India as supplying country. ARPN Journal of Engineering and Applied Sciences, 6(8), 73-78.
  • Campbell, MN. (2008). Biodiesel: algae as a renewable source for liquid fuel. Guelph Eng J., 1, 2-7.
  • Chojnacka, K. & Marquez-Rocha, FJ. (2004). Kinetic and stoichiometric relationships of the energy and carbon metabolism in the culture of microalgae. Biotechnology, 3, 21-34. DOI: 10.3923/biotech.2004.21.34
  • Christi, Y. (2007). Biodiesel from microalgae. Biotechnology Advances, 25, 294-306. DOI: 10.1016/j.biotechadv.2007.02.001
  • Demirbas, A. & Demirbas, MF. (2011). Importance of algae oil as a source of biodiesel. Energy Convers. Manage, 52, 163-170. DOI: 10.1016/j.enconman.2010.06.055
  • Ehimen, EA., Sun, ZF. & Carrington, CG. (2010). Variables affecting the in situ transesterification of microalgae lipids. Fuel, 98, 677-684. DOI: 10.1016/j.fuel.2009.10.011
  • Evangelista, JPC., Chellappa, T., Coriolano, ACF., Fernandes, Jr VF., Souza, LD. & Araújo, AS. (2012). Synthesis of alumina impregnated with potassium iodide catalyst for biodiesel production from rice bran oil. Fuel Process. Technol. 104, 90-95. DOI: 10.1016/j.fuproc.2012.04.028
  • Focke, WW., Westhuizen, IVD., Grobler, ABL., Nshoane, KT., Reddy, JK., Luyt, AS. (2012). The effect of synthetic antioxidants on the oxidative stability of biodiesel. Fult, 94, 227-233. DOI: 10.1016/j.fuel.2011.11.061
  • Fu, J., Turn, SQ., Takushi, BM., Kawamata, CL. (2016). Storage and oxidation stabilities of biodiesel derived from waste cooking oil. Fuel, 167, 89-97. DOI: 10.1016/j.fuel.2015.11.041
  • Ghosh, A., Khanra, S., Mondal, M., Halder, G., Tiwari, ON., Saini, S., Bhowmick, TK. & Gayen, K. (2016). Progress toward isolation of strains and genetically engineered strains of microalgae for production of biofuel and other value added chemicals: a review. Energy Converse. Manage., 113: 104-118. DOI: 10.1016/j.enconman.2016.01.050
  • Grace, PA., Ahmed, N., Mahmoud, MEH. & Vladimir, M. (2010). Design and analysis of biodiesel production from algae grown through carbon sequestration. Clean Tech Environ Policy, 12, 239-254. DOI: 10.1007/s10098-009-0215-6
  • Hidalgo, P., Toro, C., Ciudad, G. & Navia, R. (2013). Advances in direct transesterification of microalgal biomass for biodiesel production. Rev. Environ. Sci. Biotechnol., 12(2), 179-199. DOI: 10.1007/s11157-013-9308-0
  • Jain, S. & Sharma, MP. (2010). Prospects of biodiesel from Jatropha in India: a review. Renew. Sust. Energ. Rev. A, 14, 763-771. DOI: doi.org/10.1016/j.rser.2009.10.005
  • Jin, B., Duan, P., Xu, Y., Wang, B. & Zhang, L. (2014). Lewis acid-catalyzed in situ transesterification/esterification of microalgae in supercritical ethanol. Bioresource Technology., 162, 341-349. DOI: 10.1016/j.biortech.2014.03.157
  • Karmakar, A., Karmakar, S. & Mukherjee, S. (2012). Biodiesel production from neem towards feedstock diversification: Indian perspective. Renewable and Sustainable Energy Reviews. 16, 1050-1060. DOI: 10.1016/j.rser.2011.10.001
  • Kulkarni, MG. & Dalai, AK. (2006). Waste cooking oil – an economical source for biodiesel: a review. Ind. Eng. Chem. Resour., 45. 2901-2913. DOI: 10.1021/ie0510526
  • Leung, DYC., Wu, X. & Leung, MKH. (2010). A review on biodiesel production using catalyzed transesterification. Appl. Energ. 87, 1083-1095. DOI: 10.1016/j.apenergy.2009.10.006
  • Liu, Z., Sharma, BK., Erhan, SZ., Biswas, A., Wang, R., Shuman, TP. (2015). Oxidation and low temperature stability of polymerized soybean oil-based lubricants. Thermochimica Acta., 601, 9-16. DOI: 10.1016/j.tca.2014.12.010
  • Mathiyazhagan, M., Ganapathi, A., Jaganath, B., Renganayaki, N. & Sasireka, N. (2011). Production of biodiesel from non-edible plant oils having high FFA content. Int. J. Chem. Environ. Eng. 2(2), 119-22.
  • Mutanda, T., Ramesh, D., Karthikeyan, S., Kumari, S., Anandraj, A. & Bux, F. (2011). Bioprospecting for hyper-lipid producing microalgal strains for sustainable biofuel production. Bioresour Technol., 102, 57-70. DOI: 10.1016/j.biortech.2010.06.077
  • Nabi, N., Hustad, JE. & Kannan, D. (2008). First generation biodiesel production from nonedible vegetable oil and its effect on diesel emissions. Proceedings of the 4th BSME-ASME international conference on thermal engineering.
  • Park, JBK. & Craggs, RJ. (2014). Effect of algal recycling rate on the performance of Pediastrum boryanum dominated wastewater treatment high rate algal pond. Water Sci. Technol., 70(8), 1299-1306. DOI: 10.2166/wst.2014.369
  • Pienkos, PT. & Darzins, A. (2009). The promise and challenges of microalgal-derived biofuels. Biofuels Bioprod. Biorefining. 3, 431-440. DOI: 10.1002/bbb.159
  • Ramkumar, S. & Kirubakaran, V. (2016). Biodiesel from vegetable oil as an alternate fuel for C.I Engine and feasibility study of thermal cracking: a critical review. Energy Converse. Manage. 118, 155-169. DOI: 10.1016/j.enconman.2016.03.071
  • Sekhar, SC., Karuppasamy, K., Vedaraman, N., Kabeel, AE., Sathyamurthy, R., Elkelawy, M., Bastawissi, HAE. (2018). Biodiesel production process optimization from pithecellobium dulce seed oil: performance, combustion, and emission analysis on compression ignition engine fuelled with diesel/biodiesel blends. Energy Conversion and Management, 161, 141-154. DOI: 10.1016/j.enconman.2018.01.074
  • Sheehan, J., Dunahay, T., Benemann, J. & Roessler, P. (1998). A look back at the US Department of Energy’s Aquatic Species Program – biodiesel from algae. National Renewable Energy Laboratory (NREL) report. NREL/TP-580-24190.
  • Shirvani, T., Yan, X., Inderwildi, OR., Edwards, PP. & King, DA. (2011). Life cycle energy and greenhouse gas analysis for algae-derived biodiesel. Energy Environ. Sci., 4, 3773-3778. DOI: 10.1039/C1EE01791H
  • Silva, HKTA., Chellappa, T., Carvalho, FC., Silva, EFB., Nascimento, TA., Araújo, AS. & Fernandes, Jr. VJ. (2011). Thermal stability evaluation of methylic biodiesel obtained for different oilseeds. J. Therm. Analy. Calorim., 106, 731-733. DOI: 10.1007/s10973-011-1376-1
  • Vicente, G., Bautista, LF., Gutierrez, FJ., Rodriguez, R., Martinez, V. & Rodriguez, RA. (2010). Direct transformation of fungal biomass from submerged cultures into biodiesel. Energy Fuels. 24, 3173-3178. DOI: 10.1021/ef9015872
  • Wackett, LP. (2008). Biomass to fuels via microbial transformations. Curr. Opin. Chem. Biol., 12, 187-193. DOI: 10.1016/j.cbpa.2008.01.025
  • Wahlen, BD., Willis, RM. & Seefeldt, LC. (2011). Biodiesel production by simultaneous extraction and conversion of total lipids from microalgae, cyanobacteria and wild mixed-cultures. Bioresource Technology, 102(3), 2724-2730. DOI: 10.1016/ j.biortech.2010.11.026
  • Wang, R., Hanna, MA., Zhou, WW., Bhadury, PS., Chen, Q. & Song, BA. (2011). Production and selected fuel properties of biodiesel from promising non-edible oils: Euphorbia lathyris L., Sapiumsebiferum L. and Jatropha curcas L. Bioresour. Technol., 102, 1194-1199. DOI: 10.1016/j.biortech.2010.09.066
  • Xu, H., Xiaoling, M. & Qingyu, W. (2006). High quality biodiesel production from a microalgae Chlorella protothecoides by heterotrophic growth in fermenters. Journal of Biotechnology, 126, 499-507. DOI: 10.1016/j.jbiotec.2006.05.002
  • Yun, H., Kibong, C. & Chang, SK. (2016). Effects of biobutanol and biobutanol-diesel blends on combustion and emission characteristics in a passenger car diesel engine with pilot inject strategies. Energy Converse. Manage, 111, 79-88. DOI: 10.1016/j.enconman.2015.12.017
  • Zareh, P., Zare, AA., Ghobadian, B. (2017). Comparative assessment of performance and emission characteristics of castor, coconut and waste cooking based biodiesel as fuel in a diesel engine. Energy, 139, 883-894. DOI: 10.1016/j.energy.2017.08.040
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-6cda6490-0b19-4618-99e3-5e8dab419f8a
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.