PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Influence of admixtures on the performance of soundless chemical demolition agents and implications for their utilization

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
Soundless Chemical Demolition Agents (SCDAs) are an environmentally friendly and safer alternative to traditional rock fragmentation methods. Admixtures are used to change the rheological properties and performance of SCDAs. This study aimed to investigate the effect of various concentrations of chemical accelerators (chloride salts) and viscosity enhancing agents (VEAs: Xanthan gum, Guar gum, and Gellan gum) on the fracture onset compared to an unmodified SCDA (BRISTAR 100®). All experiments were conducted on Portland Type 1 (OPC 1) cement blocks. The flowability of the mixtures was determined by mini-slump tests. Results show that 4wt% MgCl2 and 3wt% CaCl2 have accelerated the fracture onset by 47.4% and 61.2%, respectively. VEAs have a decelerating effect, which is mitigated by the addition of the aforementioned chloride salts. Combining 4wt% MgCl2 with 0.2wt% Xanthan gum reduced the fracture onset time by 66.8%. A cost analysis shows that the initial price of the SCDA mainly determines a potential cost reduction by using admixtures. For a low-cost SCDA, the focus is likely to shift to saving time. This study can serve as a basis for future studies to further improve performance and cost as well as diversify the range of applications for SCDAs.
Rocznik
Strony
93--111
Opis fizyczny
Bibliogr. 43 poz.
Twórcy
  • Carleton College, Department of Geology, Northfield, Minnesota, 55057, USA
  • Chulalongkorn University, Department of Mining and Petroleum Engineering, Faculty of Engineering, Bangkok 10330, Thailand
  • MESA Research Unit, Department of Geology, Faculty of Science, Chulalongkorn University, Bangkok 10330, Thailand
Bibliografia
  • [1] Dumakor-Dupey NK, Arya S, Jha A. Advances in blast-induced impact prediction - a review of machine learning applications. Minerals 2021;11:601. https://doi.org/10.3390/min11060601.
  • [2] Persson P-A, Holmberg R, Lee J. Rock blasting and explosives engineering. Boca Raton: CRC Press; 1993. https://doi.org/10.1201/9780203740514.
  • [3] Iravani A, Kukolj I, Ouchterlony F, Antretter T, Astrom J. Modelling blast fragmentation of cylinders of mortar and rock. Rock Fragmentation by Blasting 2018:597-610.
  • [4] Bajpayee TS, Rehak TR, Mowrey GL, Ingram DK. Blasting injuries in surface mining with emphasis on flyrock and blast area security. J Saf Res 2004;35:47-57. https://doi.org/10.1016/j.jsr.2003.07.003.
  • [5] Abdollahisharif J, Bakhtavar E, Nourizadeh H. Green biocompatible approach to reduce the toxic gases and dust caused by the blasting in surface mining. Environ Earth Sci 2016;75:191. https://doi.org/10.1007/s12665-015-4947-9.
  • [6] Niranatlumpong P, Ramangul N, Dulyaprapan P, Nivitchanyong S, Udomkitdecha W. Material research for environmental sustainability in Thailand: current trends. Sci Technol Adv Mater 2015;16:034601. https://doi.org/10.1088/1468-6996/16/3/034601.
  • [7] Murlidhar BR, Armaghani DJ, Mohamad ET. Intelligence prediction of some selected environmental issues of blasting: a review. Open Construct Build Technol J 2020;14. https://doi.org/10.2174/1874836802014010298.
  • [8] Tonnizam Mohamad E, Jahed Armaghani D, Hasanipanah M, Murlidhar BR, Alel MNA. Estimation of air-overpressure produced by blasting operation through a neuro-genetic technique. Environ Earth Sci 2016;75:1-15.
  • [9] Ozer U. Environmental impacts of ground vibration induced by blasting at different rock units on the Kadikoy-Kartal metro tunnel. Engineering Geology - ENG GEOL 2008;100:82-90. https://doi.org/10.1016/j.enggeo.2008.03.006.
  • [10] Faradonbeh RS, Hasanipanah M, Amnieh HB, Armaghani DJ, Monjezi M. Development of GP and GEP models to estimate an environmental issue induced by blasting operation. Environ Monit Assess 2018;190:351. https://doi.org/10.1007/s10661-018-6719-y.
  • [11] Niyomthai S, Wattanawan A. Sustainable mining in Thailand: paradigm shift in environmental management. Applied Environmental Research 2014;36:55-63. https://doi.org/10.35762/AER.2014.36.1.8.
  • [12] Nurmi P. Green mining e a holistic concept for sustainable and acceptable mineral production. Ann Geophys 2017;60. https://doi.org/10.4401/ag-7420.
  • [13] Laurence D. Establishing a sustainable mining operation: an overview. J Clean Prod 2011;19:278-84. https://doi.org/10.1016/j.jclepro.2010.08.019.
  • [14] Amponsah-Tawiah K, Mensah J. Exploring the link between corporate social responsibility and health and safety in the mines. Journal of Global Responsibility 2015;6:65-79. https://doi.org/10.1108/JGR-09-2014-0029.
  • [15] De Silva R, Pathegama Gamage R, Anne Perera M. An alternative to conventional rock fragmentation methods using SCDA: a review. Energies 2016;9:958. https://doi.org/10.3390/en9110958.
  • [16] Tang W, Zhai C, Xu J, Sun Y, Cong Y, Zheng Y. The influence of borehole arrangement of soundless cracking demolition agents (SCDAs) on weakening the hard rock. Int J Min Sci Technol 2021;31:197-207. https://doi.org/10.1016/j.ijmst.2021.01.005.
  • [17] Bissen R, Pumjan S, Numprasanthai A, Chawchai S. Green mining in Thailand - alternatives to traditional methods. Shigen Sozai Koenshu 2017;4(2):7.
  • [18] Natanzi AS, Laefer DF, Zolanvari SMI. Selective demolition of masonry unit walls with a soundless chemical demolition agent. Construct Build Mater 2020;248:118635. https://doi.org/10.1016/j.conbuildmat.2020.118635.
  • [19] Laefer DF, Ambrozevitch-Cooper N, Huynh MP, Midgette J, Ceribasi S, Wortman J. Expansive fracture agent behaviour for concrete cracking. Mag Concr Res 2010;62:443-52. https://doi.org/10.1680/macr.2010.62.6.443.
  • [20] Khayat K, Yahia A. Effect of welan gum-high-range water reducer combinations on rheology of cement. Grout. MJ 1997;94:365-72. https://doi.org/10.14359/321.
  • [21] Khayat K. Use of viscosity-modifying admixture to reduce top-bar effect of anchored bars cast with fluid concrete. ACI Mater J 1998;95:158-67.
  • [22] De Silva VRS, Ranjith PG, Perera MSA, Wu B, Rathnaweera TD. A modified, hydrophobic soundless cracking demolition agent for non-explosive demolition and fracturing applications. Process Saf Environ Protect 2018;119: 1-13. https://doi.org/10.1016/j.psep.2018.07.010.
  • [23] De Silva VRS, Ranjith PG, Perera MSA, Wu B, Rathnaweera TD. The influence of admixtures on the hydration process of soundless cracking demolition agents (SCDA) for fragmentation of saturated deep geological reservoir rock formations. Rock Mech Rock Eng 2019;52: 435-54. https://doi.org/10.1007/s00603-018-1596-9.
  • [24] Nguyen TBT, Chatchawan R, Saengsoy W, Tangtermsirikul S, Sugiyama T. Influences of different types of fly ash and confinement on performances of expansive mortars and concretes. Construct Build Mater 2019;209: 176-86. https://doi.org/10.1016/j.conbuildmat.2019.03.032.
  • [25] Natanzi AS, Laefer DF, Connolly L. Cold and moderate ambient temperatures effects on expansive pressure development in soundless chemical demolition agents. Construct Build Mater 2016;110:117-27. https://doi.org/10.1016/j.conbuildmat.2016.02.016.
  • [26] Ma L, Zhao Q, Yao C, Zhou M. Impact of welan gum on tricalcium aluminate-gypsum hydration. Mater Char 2012; 64:88-95. https://doi.org/10.1016/j.matchar.2011.12.002.
  • [27] Zhang Y, Zhang Z, Li W, Wang H, Shen X. Welan gum retards the hydration of calcium sulfoaluminate. J Therm Anal Calorim 2017;130:899-908. https://doi.org/10.1007/s10973-017-6427-9.
  • [28] Kondo R, Daimon M, Sakai E, Ushiyama H. Influence of inorganic salts on the hydration of tricalcium silicate. J Appl Chem 2007;27:191-7. https://doi.org/10.1002/jctb.5020270128.
  • [29] Natanzi AS, Laefer DF, Kakali G, Iman Zolanvari SM. Temperature-Induced chemical changes in soundless chemical demolition agents. J Mater Civ Eng 2019;31:04019098. https://doi.org/10.1061/(ASCE)MT.1943-5533.0002653.
  • [30] Xu L, Xu G, Liu T, Chen Y, Gong H. The comparison of rheological properties of aqueous welan gum and xanthan gum solutions. Carbohydr Polym 2013;92:516-22. https://doi.org/10.1016/j.carbpol.2012.09.082.
  • [31] García MC, Trujillo LA, Mu~noz J, Alfaro MC. Gellan gum fluid gels: influence of the nature and concentration of gel-promoting ions on rheological properties. Colloid Polym Sci 2018;296:1741-8. https://doi.org/10.1007/s00396-018-4396-6.
  • [32] Guo A, Aamiri OB, Satyavolu J, Sun Z. Impact of thermally modified wood on mechanical properties of mortar. Construct Build Mater 2019;208:413-20. https://doi.org/10.1016/j.conbuildmat.2019.03.016.
  • [33] Zhou Z, Sofi M, Lumantarna E, San Nicolas R, Hadi Kusuma G, Mendis P. Strength development and thermogravimetric investigation of high-volume fly ash binders. Materials 2019;12:3344. https://doi.org/10.3390/ma12203344.
  • [34] Sonebi M. Rheological properties of grouts with viscosity modifying agents as diutan gum and welan gum incorporating pulverised fly ash. Cement Concr Res 2006;36:1609-18. https://doi.org/10.1016/j.cemconres.2006.05.016.
  • [35] Tregger N, Ferrara L, Shah S. Identifying viscosity of cement paste from mini-slump-flow test. M 2008;105:558-66. https://doi.org/10.14359/20197.
  • [36] Yim H, Kim J, Kwon S. Effect of admixtures on the yield stresses of cement pastes under high hydrostatic pressures. Materials 2016;9:147. https://doi.org/10.3390/ma9030147.
  • [37] Mahmood W, Mohammed A, Ghafor K. Viscosity, yield stress and compressive strength of cement-based grout modified with polymers. Results in Materials 2019;4:100043. https://doi.org/10.1016/j.rinma.2019.100043.
  • [38] Zhang X, Han J. The effect of ultra-fine admixture on the rheological property of cement paste. Cement Concr Res 2000; 30:827-30. https://doi.org/10.1016/S0008-8846(00)00236-2.
  • [39] Tan Z, Bernal SA, Provis JL. Reproducible mini-slump test procedure for measuring the yield stress of cementitious pastes. Mater Struct 2017;50:235. https://doi.org/10.1617/s11527-017-1103-x.
  • [40] Harada T, Idemitsu T, Watanabe A, Takayama S. The design method for the demolition of concrete with expansive demolition agents. In: Shah SP, Swartz SE, editors. Fracture of concrete and rock. New York, NY: Springer; 1989. p. 47-57. https://doi.org/10.1007/978-1-4612-3578-1_5.
  • [41] Laefer DF, Natanzi AS, Zolanvari SMI. Impact of thermal transfer on hydration heat of a soundless chemical demolition agent. Construct Build Mater 2018;187:348-59. https://doi.org/10.1016/j.conbuildmat.2018.07.168.
  • [42] Huynh M-P, Laefer DF. Expansive cements and soundless chemical demolition agents : state of technology review. 11th Conference on Science and Technology. Ho Chi Minh City Vietnam; 2009.
  • [43] Zou Z, Zhao Q, Wang Q, Zhou F. Thermal stability of xanthan gum biopolymer and its application in salt-tolerant bentonite water-based mud. J Polym Eng 2019;39:501-7. https://doi.org/10.1515/polyeng-2018-0386.
Uwagi
PL
Opracowanie rekordu ze środków MNiSW, umowa nr SONP/SP/546092/2022 w ramach programu "Społeczna odpowiedzialność nauki" - moduł: Popularyzacja nauki i promocja sportu (2024).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-6ccab01e-26bc-4767-a4f9-ca55ed948b1b
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.