PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Railway transition curves - optimization and assessment

Treść / Zawartość
Identyfikatory
Warianty tytułu
PL
Kolejowe krzywe przejściowe - optymalizacja i ocena
Języki publikacji
EN
Abstrakty
EN
This article relates to optimization and assessment of railway polynomial transition curves. The search for the optimum shape meant here the evaluation of the transition curve properties based on chosen dynamical quantity and generation of such a curve shape. In the study, 2-axle rail vehicle was used. The rail model represented 2-axle freight car of the average values of parameters. Mathematically understood optimization methods were also applied. As the transition curve, the authors used polynomials of 9th and 11th degrees. As the criterion of the assessment, the integral of change of lateral acceleration along the route was also used. Wide range of the circular arc radii was applied by the authors. The mentioned radii were: 600 m, 900 m, 1200 m, 2000 m and 3000 m. In the work the results of the optimization - types of the curvatures of the optimum transition curves, as well as the vehicle dynamics were presented.
PL
Celem pracy była optymalizacja kolejowych wielomianowych krzywych przejściowych 9. i 11. stopnia z wykorzystaniem nieklasycznego kryterium oceny oraz modelu pojazdu szynowego. Jako wspomniane nieklasyczne kryterium oceny autorzy zastosowali tu minimalizację wartości całki ze zmiany przyspieszenia poprzecznego nadwozia pojazdu po długości drogi. W pracy tej użyto jeden model pojazdu kolejowego. To model 2-osiowego wagonu towarowego o uśrednionych wartościach parametrów, który jest rozważany w stanie ładownym. Prosta konstrukcja pojazdu skutkuje akceptowalnymi czasami obliczeń, co jest korzystne w dużej liczbie optymalizacji. Jego strukturę pokazano na rys. 1c. Jest on uzupełniony o dyskretny pionowo i poprzecznie model toru pokazany na rys. 1a i 1b. W modelu przyjęto liniowość zawieszenia pojazdu - liniowa sztywność i tłumienie elementów zawieszenia pojazdu. To samo zastosowano w modelu toru. Wykorzystany model zawiera wszystkie kluczowe elementy modeli dynamicznych pojazdów szynowych, takie jak: kluczowe elementy masowe (zestawy kołowe i nadwozie pojazdu), elementy zawieszenia (elementy sprężyste i tłumiące), koła i geometrie szyn opisaną przez rzeczywisty, nieliniowy kształt ich profili. Poza tym, styczne siły kontaktowe są obliczane przy użyciu uproszczonej nieliniowej teorii kontaktu J.J. Kalkera. Ponadto, model pojazdu jest uzupełniony modelem toru, co oznacza, że w rzeczywistości rozważany jest układ dynamiczny pojazd-tor. Może on być traktowany jako zaawansowany model dynamiczny, zwłaszcza gdy porówna się go do punktu materialnego reprezentującego pojazd w tradycyjnych metodach oceny i kształtowania krzywych przejściowych.
Rocznik
Strony
207--221
Opis fizyczny
Bibliogr. 40 poz., il., tab.
Twórcy
  • Warsaw University of Technology, Faculty of Transport, Warsaw, Poland
  • Warsaw University of Technology, Faculty of Transport, Warsaw, Poland
Bibliografia
  • [1] A. Ahmad, J. Ali, “G3 transition curve between two straight lines”, Proc. 5th CGIV’08 IEEE Computer Society, 2008, pp. 154-159, DOI: 10.1109/CGIV.2008.22.
  • [2] A. Ahmad, R. Gobithasan, J. Ali, “G2 transition curve using quadratic Bezier curve”, Proc. of the Computer Graphics, Imaging and Visualisation Conference, IEEE Computer Society, 2007, pp. 223-228.
  • [3] Z. Barna, L. Kisgyorgy, “Analysis of hyperbolic transition curve geometry”, Periodica Polytechnica Civil Engineering, 2015, vol. 59, no. 2, pp. 173-178.
  • [4] J.A. Bonneson, “A kinematic approach to horizontal curve transition design”, Transportation Research Record, 2000, vol. 1737, pp. 1-8.
  • [5] G. Bosurgi, A. D’Andrea, “A polynomial parametric curve (PPP) for design of horizontal geometry of highways”, Computer-Aided Civil and Infrastructure Engineering, 2012, vol. 24, no. 4, pp. 304-312.
  • [6] CEN Railway applications - ride comfort for passengers - measurement and evaluation, Brussels: ENV 12299, 2009.
  • [7] N. Eliou, G. Kaliabetsos, “A new, simple and accurate transition curve type, for use in road and railway alignment design”, European Transport Research Review, 2014, vol. 6, no. 2, pp. 171-179, DOI: 10.1007/s12544-013-0119-8.
  • [8] C. Esveld, Modern Railway Track. MRT-Productions, 2001.
  • [9] S. Fischer, “Comparison of railway track transition curves types”, Pollack Periodica, An International Journal for Engineering and Infrastructure Science, 2009, vol. 4, no. 3, pp. 99-110, DOI: 10.1556/Pollack.4.2009.3.9.
  • [10] H. Hasslinger, Measurement proof for the superiority of a new track alignment design element, the so-called “Viennese Curve”, ZEV Rail, 2005.
  • [11] E. Jacobs, “Die sinusoide als neuzeitliches trassierungselement”, Vermessung-Ingenieur, 1987, vol. 87, pp. 3-9.
  • [12] Q.P. Jiang, “Study of the new type of transition curve of road”, China Journal of Highway and Transportation”, 2002, vol. 15, no. 2.
  • [13] D. Kahler, “Ein übergangsbogen für den S-Bahnverkehr mit linearer Überhöhungsrampe”, Vermessungstechnik und Raumordnung, 1990, vol. 52, pp. 10-18.
  • [14] D. Kahler, “Übergangsbögen zur ausrundung der neigungswechel im schienen-schnellverkehr”, Zeitschrift für Vermessungwesen, 1990, vol. 115, pp. 154-162.
  • [15] W. Kik, “Comparison of the behaviour of different wheelset-trackmodels”, in Proceedings of the 12th IAVSD Symposium on the Dynamics of Vehicles on Roads and on Tracks, Vehicle System Dynamics, G. Sauvage, Ed. Amsterdam Swets & Zeitlinger, 1992, 20(suppl.), pp. 325-339.
  • [16] L.T. Klauder, S.M. Chrismer, J. Elkins J., “Improved spiral geometry for high-speed rail and predicted vehicle response”, Rail Track and Structures, 2003, vol. 6, pp. 15-17.
  • [17] A. Kobryn, “New solutions for general transition curves”, Journal of Surveying Engineering, 2014, vol. 140, no.1, pp. 12-21, DOI: 10.1061/%28ASCE%29SU.1943-5428.0000113.
  • [18] W. Koc, “New transition curve adapted to railway operational requirements”, Journal of Surveying Engineering, 2019, vol. 145, no. 3, DOI: 10.1061/%28ASCE%29SU.1943-5428.0000284.
  • [19] B. Kuvfer, “Optimisation of horizontal alignments for railway - procedure involving evaluation of dynamic vehicle response”, Dissertation, Royal Institute of Technology, Stockholm, 2000.
  • [20] X. Li, M. Li, C. Ma, J. Bu, L. Zhu, “Analysis on mechanical performances of high-speed railway transition curves”, in Proceedings of the ICCTP 2009, Harbin, China, 5-9 Aug. 2009. pp. 1-8.
  • [21] X. Li, M. Li, H. Wang, J. Bu, M. Chen, “Simulation on dynamic behaviour of railway transition curves”, in Proceedings of the ICCTP 2010, Beijing, China, 4-8 August 2010, pp. 3349-3357.
  • [22] X. Li, M. Li, J. Bu, H. Wang, “Comparative analysis on the linetype mechanical performances of two railway transition curves”, China Railway Science, 2009, vol. 30, no. 6, pp. 1-6.
  • [23] X. Li, M. Li, J. Bu, Y. Shang, M. Chen, “A general method for designing railway transition curve algebraic equations”, in Proceedings of the ICCTP 2010, Beijing, China, 4-8 August 2010, pp. 3340-3348.
  • [24] S.L. Lian, J.H. Liu, X.G. Li, W.X. Liu, “Test verification of rationality of transition curve parameters of dedicated passenger traffic railway lines”, Journal of the China Rail Society, 2006, vol. 28, no. 6, pp. 88-92.
  • [25] M. Lindahl, Track geometry for high-speed railways, Department of Vehicle Engineering Royal Institute of Technology Stockholm, 2001.
  • [26] X.Y. Long, Q.C. Wei, F.Y. Zheng, “Dynamic analysis of railway transition curves”, Proc. IMechE, Part F: Journal Rail and Rapit Transit, 2010, vol. 224, no. 1, pp. 1-14, DOI: 10.1243/09544097JRRT287.
  • [27] Y. Michitsuji, Y. Suda, “Improvement of curving performance with assist control on transition curve for single-axle dedicated passenger traffic railway lines”, Journal of the China Railway Society, 2006, vol. 28, no. 6, pp. 88-92.
  • [28] A. Pirti, M.A. Yucel, T. Ocalan, “Transrapid and the transition curve as sinusoid”, Tehnicki Vjesnik, 2016, vol. 23, no. 1, pp. 315-320.
  • [29] J. Pombo, J. Ambrosio, “General spatial curve joint for rail guided vehicles: kinematics and dynamics”, Multibody System Dynamics, 2003, vol. 9, no. 3, pp. 237-264
  • [30] T.I. Shen, C.H. Chang, K.Y. Chang, C.C. Lu, “A numerical study of cubic parabolas on railway transition curves”, Journal of Marine Science and Technology, 2013, vol. 21, no. 2, pp. 191-197.
  • [31] Y. Suda, W. Wang, H. Komine, Y. Sato, T. Nakai, Y. Shimokawa Y, “Study on control of air suspension system for railway vehicle to prevent wheel load reduction at low-speed transition curve negotiation”, Vehicle System Dynamics 2006, vol. 44(supl.), pp. 814-822.
  • [32] Y. Tanaka, “On the transition curve considering effect of variation of the train speed”, ZAMM - Journal of Applied Mathematics and Mechanics, 2006, vol. 15, no. 5, pp. 266-267.
  • [33] E. Tari, O. Baykal, “A new transition curve with enhanced properties”, Canadian Journal of Civil Engineering, 2005, vol. 32, no. 5, pp. 913-923, DOI: 10.1139/l05-051.
  • [34] D. Vermeij, “Design of a high speed track”, HERON, 2000, vol. 45, no. 1, pp. 9-23.
  • [35] Y.L. Xu, Z.L, Wang, G.Q. Li, S. Chen, Y.B. Yang, “High-speed running maglev trains interacting with elastic transitional viaducts”, Engineering Structures, 2019, vol. 183, pp. 562-578.
  • [36] J.Q. Zhang, Y.H. Huang, F. Li, “Influence of transition curves on dynamics performance of railway vehicle”, Journal of Traffic and Transportation Engineering, 2010, vol. 10, no. 4, pp. 39-44.
  • [37] K. Zboinski, “Dynamical investigation of railway vehicles on a curved track”, European Journal of Mechanics A-Solids, 1998, vol. 17, no. 6.
  • [38] K. Zboinski, “Numerical studies on railway vehicle response to transition curves with regard to their different shape”, Archives of Civil Engineering, 1998, vol. 44, no. 2, pp. 151-18.
  • [39] K. Zboinski, P. Woznica, “Optimisation of railway polynomial transition curves: a method and results”, in Proceedings of the First International Conference on Railway Technology: Research, Development and Maintenance. Stirlingshire, UK: Civil-Comp Press, 2012.
  • [40] K. Zboinski, P. Woznica, “Combined use of dynamical simulation and optimisation to form railway transition curves”, Vehicle System Dynamics, 2018, vol. 56, no. 9, pp. 1394-1450, DOI: 10.1080/00423114.2017.1421315.
Uwagi
Opracowanie rekordu ze środków MEiN, umowa nr SONP/SP/546092/2022 w ramach programu "Społeczna odpowiedzialność nauki" - moduł: Popularyzacja nauki i promocja sportu (2022-2023).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-6b416e1e-55e6-49b9-9e36-71d6d124b1f2
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.