PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Static Characteristics of Air Gauges Applied in the Roundness Assessment

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
In the article, analysis of the work conditions and the metrological characteristics of the air gauges dedicated for the roundness assessment is described. To reach the required accuracy of the acquired data, the phenomena of gas dynamics had to be analyzed in the whole flow through elements of the air gauge. A model based on the second critical parameters was used, because it reflects the true processes of the air flow. As a result, fast and accurate simulations provided series of the characteristics to be considered. Nevertheless, the chosen air gauge configuration underwent the experimental verification of its metrological characteristics. Finally, the entire measurement system Geoform with the gauge head based on the chosen air gauges underwent the accuracy test in order to make sure of its overall measurement quality.
Rocznik
Strony
85--96
Opis fizyczny
Bibliogr. 24 poz., rys., wykr., wzory
Twórcy
autor
  • Poznan University of Technology, Institute of Mechanical Technology, Piotrowo 3, 60-965 Poznań, Poland
autor
  • Poznan University of Technology, Institute of Mechanical Technology, Piotrowo 3, 60-965 Poznań, Poland
Bibliografia
  • [1] Tanner, C.J. (1958). Air gauging - history and future developments. Institution of Production Engineers Journal, 37(7), 448-462.
  • [2] Vacharanukul, K., Mekid, S. (2005). In-Process Dimensional Inspection Sensors. Measurement, 38, 204-218.
  • [3] Wang, Y.H., Yu, X.F., Fei, Y.T. (2005). An Automatic Sorting System Based on Pneumatic Measurement. Key Engineering Materials, 295-296, 563-568.
  • [4] Menzies, I., Koshy, P. (2009). In-process detection of surface porosity in machined castings. International Journal of Machine Tools & Manufacture, 49, 530-535.
  • [5] Koshy, P., Grandy, D., Klocke, F. (2011). Pneumatic non-contact topography characterization of finish-ground surfaces using multivariate projection methods. Precision Engineering, 35(2), 282-288.
  • [6] Liu, J., et al. (2012). Design and accuracy analysis of pneumatic gauging for form error of spool valve inner hole. Flow Measurement and Instrumentation, 23, 26-32.
  • [7] Janiczek, T., Janiczek, J. (2010). Linear dynamic system identification in the frequency domain using fractional derivatives. Metrol. Meas. Syst., 17(2), 279-288.
  • [8] Jermak, Cz.J. (2010). Methods of Shaping the Metrological Characteristics of Air Gauges. Journal of Mechanical Engineering, 6(56), 385-390.
  • [9] Stępien, K., Janecki, D., Adamczak, S. (2011). Investigating the influence of selected factors on results of Vblock cylindricity measurements. Measurement, 44, 767-777.
  • [10] Jermak, Cz.J., Rucki, M. (2012). Air Gauging: Static and Dynamic Characteristics. Barcelona: IFSA.
  • [11] Rucki, M., Jermak, Cz.J. (2012). Dynamic Properties of Small Chamber Air Gages. Journal of Dynamic Systems, Measurement, and Control, 134(1), 011001.
  • [12] Tanner, C.J. (1958). Air gauging - history and future developments. Institution of Production Engineers Journal, 37(7), 448-462.
  • [13] Bokov, V.B. (2011). Pneumatic gauge steady-state modelling by theoretical and empirical methods. Measurement, 44, 303-311.
  • [14] Kamiński, Z., Kulikowski, K. (2015). Determination of the functional and service characteristics of the pneumatic system of an agricultural tractor with mechanical brakes using simulation methods. Maintenance and Reliability, 17(3), 355-364.
  • [15] Jermak, Cz.J., Barisic, B., Rucki, M. (2010). Correction of the metrological properties of the pneumatic length measuring gauges through changes of the measuring nozzle head surface shape. Measurement, 43(9), 1217-1227.
  • [16] Rucki, M., Barisic, B., Varga, G. (2010). Air Gauges as a Part of the Dimensional Inspection Systems. Measurement, 43(1), 83-91.
  • [17] Jermak, Cz.J., Spyra, A., Rucki, M. (2012). Mathematical Model of Dynamic Work Conditions in the Measuring Chamber of an Air Gauge. Metrol. Meas. Syst., 19(2), 29-38.
  • [18] Piątkowski, R., Jermak, Cz.J., Rucki, M. (2011). The exact calculation of the air gauge static characteristics. Theory and Practice of Air Gauging. Jermak, Cz.J. (ed), Poznan University of Technology, Poznań, 43-56.
  • [19] Rucki, M. (2007). Step Response of the Air Gauge. Metrol. Meas. Syst., 14(3), 429-436.
  • [20] Gao. W., Kiyono, S. (1997). On-machine roundness measurement of cylindrical workpieces by the combined three-point method. Measurement, 21(4), 147-56.
  • [21] Cellary, A., Jermak, Cz.J., Majchrowski, R. (2009). Simulation Methods for Determination of the Errors of Reference Roundness Measurement System. Proc. of the 4th International Conference Metrology in Production Engineering, Poznań, Poland, 53-58.
  • [22] Rudin, W. (1976). Principles of mathematical analysis. New York: McGraw-Hill, Inc.
  • [23] Janusiewicz, A., Adamczak, S., Makieła, W., Stępień, K. (2011). Determining the theoretical method error during an on-machine roundness measurement. Measurement, 44(9), 1761-1767.
  • [24] Adamczak, S., Janusiewicz, A., Makieła, W., Stępień, K. (2011). Statistical validation of the method for measuring radius variations of components on the machine tool. Metrol. Meas. Syst., 18(1), 35-46.
Uwagi
EN
This work was supported by the Ministry of Science and Higher Education, Poland, project N505 010 32/1555.
PL
Opracowanie ze środków MNiSW w ramach umowy 812/P-DUN/2016 na działalność upowszechniającą naukę.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-6ab5bda2-6f2c-4ead-a9b0-eeae1794fb5b
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.