PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Powiadomienia systemowe
  • Sesja wygasła!
Tytuł artykułu

On the monotonic properties and oscillatory behavior of solutions of neutral differential equations

Wybrane pełne teksty z tego czasopisma
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
In this work, we study new asymptotic properties of positive solutions of the even-order neutral differential equation with the noncanonical operator. The new properties are iterative, which means they can be used several times. We also use these properties to obtain new criteria for oscillation of the studied equation.
Wydawca
Rocznik
Strony
art. no. 20230123
Opis fizyczny
Bibliogr. 25 poz.
Twórcy
autor
  • Department of Mathematics, Faculty of Science, Mansoura University, 35516 Mansoura, Egypt; Department of Mathematics, Faculty of Education and Science, University of Saba Region-Marib, Marib, Yemen
autor
  • Department of Mathematics, College of Science, Qassim University, P.O. Box 6644, Buraydah 51452, Saudi Arabia
  • Department of Mathematics, Faculty of Science, Mansoura University, 35516 Mansoura, Egypt
  • Department of Mathematics, JIS College of Engineering, Kalyani, West Bengal 741235, India
  • Nuclear Engineering and Fluid Mechanics Department, University of the Basque Country UPV/EHU, Vitoria-Gasteiz, Spain
  • Department of Mathematics, Faculty of Science, Mansoura University, 35516 Mansoura, Egypt
Bibliografia
  • [1] K. J. Hale, Theory of Functional Differential Equations, Springer, New York, 1977.
  • [2] L. H. Erbe, Q. Kong, and B. G. Zhang, Oscillation Theory for Functional Differential Equations, Marcel Dekker, Inc., New York, 2017.
  • [3] R. P. Agarwal, S. R. Grace, and D. O’Regan, Oscillation Theory for Second Order Dynamic Equations, Taylor & Francis, London, UK, 2003.
  • [4] R. P. Agarwal, M. Bohner, T. Li, and C. Zhang, A new approach in the study of oscillatory behavior of even-order neutral delay differential equations, Appl. Math. Comput. 225 (2013), 787–794.
  • [5] O. Moaaz, H. Ramos, and J. Awrejcewicz, Second-order Emden-Fowler neutral differential equations: A new precise criterion for oscillation, Appl. Math. Letter. 118 (2021), 107172.
  • [6] S. S. Santra, A. K. Sethi, O. Moaaz, K. M. Khedher, and S.-W. Yao, New oscillation theorems for second-order differential equations with canonical and non-canonical operator via Riccati transformation, Mathematics 9 (2021), no. 10, 1111.
  • [7] M. Ruggieri, S.S. Santra, and A. Scapellato, Oscillatory behavior of second-order neutral differential equations, Bulletin Brazilian Math. Soci. 53 (2022), no. 3, 665–675.
  • [8] O. Bazighifan, O. Moaaz, R.A. El-Nabulsi, and A. Muhib, Some new oscillation results for fourth-order neutral differential equations with delay argument, Symmetry 12 (2020), no. 8, 1248.
  • [9] O. Moaaz, A. Muhib, T. Abdeljawad, S.S. Santra, and M. Anis, Asymptotic behavior of even-order noncanonical neutral differential equations, Demonstr. Math. 55 (2022), no. 1, 28–39.
  • [10] G. Purushothaman, K. Suresh, E. Tunc, and E. Thandapani, Oscillation criteria of fourth-order nonlinear semi-noncanonical neutral differential equations via a canonical transform. Electron. J. Differential Equations 2023 (2023), 01–12.
  • [11] O. Moaaz, J. Awrejcewicz, and A. Muhib, Establishing new criteria for oscillation of odd-order nonlinear differential equations, Mathematics 8 (2020), no. 6, 937.
  • [12] O. Moaaz, B. Qaraad, R.A. El-Nabulsi, and O. Bazighifan, New results for Kneser solutions of third-order nonlinear neutral differential equations, Mathematics 8 (2020), no. 5, 686.
  • [13] B. Baculikova, J. Dzurina, and J. R. Graef, Onthe oscillation of higher-order delay differential equations, J. Math. Sci. 187 (2012), 387–400.
  • [14] C. Zhang, R. P. Agarwal, M. Bohner, and T. Li, New results for oscillatory behavior of even-order half-linear delay differential equations, Appl. Math. Lett. 26 (2013), no. 2, 179–183.
  • [15] C. Zhang, T. Li, and S. H. Saker, Oscillation of fourth-order delay differential equations. J. Math. Sci. 201 (2014), no. 3, 296–309.
  • [16] A. Zafer, Oscillation criteria for even order neutral differential equations, Appl. Math. Lett. 11 (1998), 21–25.
  • [17] B. Karpuz, O. Ocalan, and S. Ozturk, Comparison theorems on the oscillation and asymptotic behavior of higher-order neutral differential equations, Glasg. Math. J. 52 (2010), 107–114.
  • [18] Q. X. Zhang, J. R. Yan, and L. Gao, Oscillation behavior of even-order nonlinear neutral differential equations with variable coefficients, Comput. Math. Appl. 59 (2010), 426–430.
  • [19] T. Li, Z. Han, P. Zhao, and S. Sun, Oscillation of even-order neutral delay differential equations, Adv. Differential Equations 2010 (2010), 1–9.
  • [20] F. W. Meng and R. Xu, Oscillation criteria for certain even order quasi-linear neutral differential equations with deviating arguments, Appl. Math. Comput. 190 (2007), 458–464.
  • [21] T. Li and Y. V. Rogovchenko, Asymptotic behavior of higher-order quasilinear neutral differential equations, Abstr. Appl. Anal. 2014 (2014), 395368, 11 pp, doi: https://dx.doi.org/10.1155/2014/395368.
  • [22] R. P. Agarwal, S. R. Grace, and D. O’Regan, Oscillation Theory for Difference and Functional Differential Equations, Kluwer Academic, Dordrecht, The Netherlands, 2000.
  • [23] C. Zhang, R. Agarwal, M. Bohner, and T. Li, New results for oscillatory behavior of even-order half-linear delay differential equations, Appl. Math. Lett. 26 (2013), 179–183.
  • [24] C. G. Philos, On the existence of nonoscillatory solutions tending to zero at infty for differential equations with positive delays, Arch. Math. 36 (1981), 168–178.
  • [25] G. Ladde, S. V. Lakshmikantham, and B. G. Zhang, Oscillation Theory of Differential Equations with Deviating Arguments, Marcel Dekker, New York, 1987.
Uwagi
Opracowanie rekordu ze środków MNiSW, umowa nr POPUL/SP/0154/2024/02 w ramach programu "Społeczna odpowiedzialność nauki II" - moduł: Popularyzacja nauki (2025).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-6a9a571b-5cc9-46ef-804b-c0d0bec77861
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.