PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Influence of speed and heat input of the pulsed-arc welding process on the structure formation of Al-Mg-Mn aluminum alloy joints

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
This paper establishes the trends in structure formation of 4 mm thick 1561 aluminum alloy welded joints, depending on changes in the parameters of the MIG welding mode on a steel substrate (specifically, the speed and heat input of the process). Welding modes were selected based on the criterion of satisfactory seam formation, and the optimal welding mode was determined based on the criteria of minimizing porosity, grain refinement, and improved mechanical properties. Technological studies have shown that, based on the criterion of satisfactory seam formation with a quality level ranging from C to B according to ISO 10042, it is advisable to select a welding speed between 380 and 600 mm/min with a heat input between 217 and 240 J/mm. Metallographic studies have shown that increasing the MIG welding speed promotes weld grain refinement, decreases their shape factor, and simultaneously increases the number of pores while reducing their size. Mechanical tests demonstrated that increasing the welding speed enhances the mechanical properties of welded joints. Therefore, when using MIG welding of aluminum alloys in industry, it is recommended to increase the speed to 600 mm/min and higher.
Twórcy
  • China-Ukraine Institute of Welding, Guangdong Academy of Sciences, Guangdong Provincial Key Laboratory of Material Joining and Advanced Manufacturing, Guangzhou, 510650, China
  • E.O. Paton Electric Welding Institute, National Academy of Sciences of Ukraine, 03150, Kazymyr Malevych Str., 11, Kyiv, Ukraine
autor
  • China-Ukraine Institute of Welding, Guangdong Academy of Sciences, Guangdong Provincial Key Laboratory of Material Joining and Advanced Manufacturing, Guangzhou, 510650, China
  • China-Ukraine Institute of Welding, Guangdong Academy of Sciences, Guangdong Provincial Key Laboratory of Material Joining and Advanced Manufacturing, Guangzhou, 510650, China
  • E.O. Paton Electric Welding Institute, National Academy of Sciences of Ukraine, 03150, Kazymyr Malevych Str., 11, Kyiv, Ukraine
  • China-Ukraine Institute of Welding, Guangdong Academy of Sciences, Guangdong Provincial Key Laboratory of Material Joining and Advanced Manufacturing, Guangzhou, 510650, China
  • E.O. Paton Electric Welding Institute, National Academy of Sciences of Ukraine, 03150, Kazymyr Malevych Str., 11, Kyiv, Ukraine
  • E.O. Paton Electric Welding Institute, National Academy of Sciences of Ukraine, 03150, Kazymyr Malevych Str., 11, Kyiv, Ukraine
  • E.O. Paton Electric Welding Institute, National Academy of Sciences of Ukraine, 03150, Kazymyr Malevych Str., 11, Kyiv, Ukraine
  • E.O. Paton Electric Welding Institute, National Academy of Sciences of Ukraine, 03150, Kazymyr Malevych Str., 11, Kyiv, Ukraine
autor
  • China-Ukraine Institute of Welding, Guangdong Academy of Sciences, Guangdong Provincial Key Laboratory of Material Joining and Advanced Manufacturing, Guangzhou, 510650, China
autor
  • E.O. Paton Electric Welding Institute, National Academy of Sciences of Ukraine, 03150, Kazymyr Malevych Str., 11, Kyiv, Ukraine
  • E.O. Paton Electric Welding Institute, National Academy of Sciences of Ukraine, 03150, Kazymyr Malevych Str., 11, Kyiv, Ukraine
Bibliografia
  • 1. Das S., Yin W. Trends in the global aluminum fabrication industry. The Journal of The Minerals, Metals & Materials Society, 2007; 59: 83–87. https://doi.org/10.1007/s11837-007-0027-2.
  • 2. Alexopoulos N.D., Gialos A.A., Zeimpekis V., Velonaki Z., Kashaev N., Riekehr S., Karanika A. Laser beam welded structures for a regional aircraft: weight, cost and carbon footprint savings. Journal of Manufacturing Systems, 2016; 39: 38–52. https://doi.org/10.1016/j.jmsy.2016.02.002.
  • 3. Gu Y., Zhang W., Xu Y. et al. Stress-assisted corrosion behaviour of Hastelloy N in FLiNaK molten salt environment. npj Mater Degrad, 2022; 6(90). https://doi.org/10.1038/s41529-022-00300-x.
  • 4. Yun X., Wang Z. Special issue editorial: Aluminium alloy structures. Structures, 2024; 69: 107297. https://doi.org/10.1016/j.istruc.2024.107297.
  • 5. Boczkal S., Mitka M., Hrabia-Wiśnios J., Płonka B., Węglowski M. St., Węglowska A., Śliwiński P. Analysis of the structure and properties of welded joints made from aluminum alloys by electron beam welding (EBW) and friction stir welding (FSW). Crystals, 2025; 15(3): 208. https://doi.org/10.3390/cryst15030208.
  • 6. Chen B.-Q., Liu K., Xu S. Recent advances in aluminum welding for marine structures. Journal of Marine Science and Engineering, 2024; 12(9): 1539. https://doi.org/10.3390/jmse12091539.
  • 7. Kuchuk-Yatsenko S.I., Hushchyn K.V., Ziakhor I.V., Samotryasov S.M., Zavertannyi M.S. and Levchuk A.M. Structure and mechanical properties of 2219-T87 aluminium alloy joints produced by flash butt welding. The Paton Welding Journal, 2021; 8: 27–32. https://doi.org/10.37434/tpwj2021.08.06.
  • 8. Olabode M., Kah P., Martikainen J. Aluminium alloys welding processes: Challenges, joint types and process selection. Proceedings of the Institution of Mechanical Engineers, Part B, Journal of Engineering Manufacture, 2013; 227: 1129–1137. https://doi.org/10.1177/0954405413484015.
  • 9. Verma R.P., Pandey K.N., András K., Khargotra R., Singh T. Difficulties and redressal in joining of aluminium alloys by GMA and GTA welding: a review. Journal of Materials Research and Technology, 2023; 23: 2576–2586. https://doi.org/10.1016/j.jmrt.2023.01.183.
  • 10. Ramji B.R., Bharathi V., Prabhu Swamy N.R. Characterization of TIG and MIG welded aluminium 6063 alloys. Materials Today: Proceedings, 2021; 46(18): 8895–8899. https://doi.org/10.1016/j.matpr.2021.05.356.
  • 1. Das S., Yin W. Trends in the global aluminum fabrication industry. The Journal of The Minerals, Metals & Materials Society, 2007; 59: 83–87. https://doi.org/10.1007/s11837-007-0027-2.
  • 2. Alexopoulos N.D., Gialos A.A., Zeimpekis V., Velonaki Z., Kashaev N., Riekehr S., Karanika A. Laser beam welded structures for a regional aircraft: weight, cost and carbon footprint savings. Journal of Manufacturing Systems, 2016; 39: 38–52. https://doi.org/10.1016/j.jmsy.2016.02.002.
  • 3. Gu Y., Zhang W., Xu Y. et al. Stress-assisted corrosion behaviour of Hastelloy N in FLiNaK molten salt environment. npj Mater Degrad, 2022; 6(90). https://doi.org/10.1038/s41529-022-00300-x.
  • 4. Yun X., Wang Z. Special issue editorial: Aluminium alloy structures. Structures, 2024; 69: 107297. https://doi.org/10.1016/j.istruc.2024.107297.
  • 5. Boczkal S., Mitka M., Hrabia-Wiśnios J., Płonka B., Węglowski M. St., Węglowska A., Śliwiński P. Analysis of the structure and properties of welded joints made from aluminum alloys by electron beam welding (EBW) and friction stir welding (FSW). Crystals, 2025; 15(3): 208. https://doi.org/10.3390/cryst15030208.
  • 6. Chen B.-Q., Liu K., Xu S. Recent advances in aluminum welding for marine structures. Journal of Marine Science and Engineering, 2024; 12(9): 1539. https://doi.org/10.3390/jmse12091539.
  • 7. Kuchuk-Yatsenko S.I., Hushchyn K.V., Ziakhor I.V., Samotryasov S.M., Zavertannyi M.S. and Levchuk A.M. Structure and mechanical properties of 2219-T87 aluminium alloy joints produced by flash butt welding. The Paton Welding Journal, 2021; 8: 27–32. https://doi.org/10.37434/tpwj2021.08.06.
  • 8. Olabode M., Kah P., Martikainen J. Aluminium alloys welding processes: Challenges, joint types and process selection. Proceedings of the Institution of Mechanical Engineers, Part B, Journal of Engineering Manufacture, 2013; 227: 1129–1137. https://doi.org/10.1177/0954405413484015.
  • 9. Verma R.P., Pandey K.N., András K., Khargotra R., Singh T. Difficulties and redressal in joining of aluminium alloys by GMA and GTA welding: a review. Journal of Materials Research and Technology, 2023; 23: 2576–2586. https://doi.org/10.1016/j.jmrt.2023.01.183.
  • 10. Ramji B.R., Bharathi V., Prabhu Swamy N.R. Characterization of TIG and MIG welded aluminium 6063 alloys. Materials Today: Proceedings, 2021; 46(18): 8895–8899. https://doi.org/10.1016/j.matpr.2021.05.356.
  • 11. Ye M., Wang Z., Butt H. A., Yang M., Chen H., Han K., Cui M., Lei Y. Enhancing the joint of dissimilar aluminum alloys through MIG welding approach assisted by ultrasonic frequency pulse. Materials Letters, 2023; 330: 133289. https://doi.org/10.1016/j.matlet.2022.133289.
  • 12. Prokopov V., Fialko N., Sherenkovskaya G. et al. Effect of the coating porosity on the processes of heat transfer under gas-thermal atomization. Powder Metall. Met. Ceram. 1993; 32: 118–121. https://doi.org/10.1007/BF00560034.
  • 13. Fialko N., Prokopov V., Meranova N. et al. Thermal physics of gas thermal coatings formation processes. State of investigations. Fizika i Khimiya Obrabotki Materialov, 1993; 4: 83–93.
  • 14. Tsybulkin G.A. Study of pulsed arc processes at periodic switching of volt-ampere characteristics of arc power source. The Paton Welding Journal, 2019; 7: 2–6. https://doi.org/10.15407/tpwj2019.07.01.
  • 15. Sevim I., Hayat F., Kaya Y., Kahraman N. The study of MIG weldability of heat-treated aluminum alloys. The International Journal of Advanced Manufacturing Technology, 2012; 66(9–12). https://doi.org/10.1007/s00170-012-4462-z.
  • 16. Fialko N., Prokopov V., Meranova N. et al. Temperature conditions of particle-substrate systems in a gas-thermal deposition process. Fizika i Khimiya Obrabotki Materialov, 1994; 2: 59–67.
  • 17. Zhu S., Wang Q., Yin F., Liang Y., Wang X. Research on Thermal Process of MIG Welding of Aluminum Alloy with Longitudinal Magnetic Field. The Open Mechanical Engineering Journal, 2011; 5: 32–38. https://doi.org/10.2174/1874155X01105010032.
  • 18. Schubert E. Challenges in thermal welding of aluminium alloys. World Journal of Engineering and Technology, 2018; 6(2): 296–303. https://doi.org/10.4236/wjet.2018.62018.
  • 19. Prokopov V.G., Fialko N.M., Sherenkovskaya G.P. et al. Effect of coating porosity on the process of heat transfer with gas-thermal deposition. Powder Metall. Met. Ceram. 1993; 32: 118–121. https://doi.org/10.1007/BF00560034.
  • 20. Leggatt R.H. Residual stresses in welded structures. International Journal of Pressure Vessels and Piping, 2008; 85(3): 144–151. https://doi.org/10.1016/j.ijpvp.2007.10.004.
  • 21. Peel M., Steuwer A., Preuss M., Withers P.J. Microstructure, mechanical properties and residual stresses as a function of welding speed in aluminium AA5083 friction stir welds. Acta Materialia, 2003; 51(16): 4791–4801. https://doi.org/10.1016/S1359-6454(03)00319-7.
  • 22. Fialko N.M., Prokopov V.G., Meranova N.O. et al. Temperature conditions of particle-substrate systems in a gas-thermal deposition process. Fizika i Khimiya Obrabotki Materialov, 1994; 2: 59–67.
  • 23. Kvasnytskyi V., Korzhyk V., Kvasnytskyi V., Mialnitsa H., Dong C., Pryadko T., Matviienko M., Buturlia Y. Designing brazing filler metal for heat-resistant alloys based on NI3AL intermetalide. Eastern-European Journal of Enterprise Technologies, 2020; 6(108): 6–19. https://doi.org/10.15587/1729-4061.2020.217819.
  • 24. Mao D., Xie Y., Meng X., Ma X., Zhang Z., Sun X., Wan L., Volodymyr K., Huang Y. Strength-ductility materials by engineering a coherent interface at incoherent precipitates. Materials Horizons, 2024; 11(14): 3408–3419. https://doi.org/10.1039/D4MH00139G.
  • 25. Fialko N.M., Prokopov V.G., Meranov N.O., Borisov Yu.S., Korzhik V.N., Sherenkovskaya G.P. Temperature conditions of particle-substrate systems in a gas-thermal deposition process. Fizika i Khimiya Obrabotki Materialov, 1994; 2: 59–67.
  • 26. Fialko N., Prokopov V., Meranov N. et al. Thermal physics of gas-thermal coatings formation processes. State of investigations. Fizika i Khimiya Obrabotki Materialov, 1993; 4: 83–93.
  • 27. Lu Y., Zhu S., Zhao Z., Chen T., Zeng J. Numerical simulation of residual stresses in aluminum alloy welded joints. Journal of Manufacturing Processes, 2020; 50: 380–393. https://doi.org/10.1016/j.jmapro.2019.12.056.
  • 28. Fialko N., Dinzhos R., Sherenkovskii J. et al. Establishment of regularities of influence on the specific heat capacity and thermal diffusivity of polymer nanocomposites of a complex of defining parameters. Eastern-European Journal of Enterprise Technologies, 2021; 114: 34–39. https://doi.org/10.15587/1729-4061.2021.245274.
  • 29. Nishimura R., Ma N., Liu Y., Li W., Yasuki T. Measurement and analysis of welding deformation and residual stress in CMT welded lap joints of 1180 MPa steel sheets. Journal of Manufacturing Processes, 2021; 72: 515–528. https://doi.org/10.1016/j.jmapro.2021.10.050.
  • 30. Ardika R.D., Triyono T., Muhayat N., Triyono A. A review porosity in aluminum welding. Procedia Structural Integrity, 2021; 33: 171–180. https://doi.org/10.1016/j.prostr.2021.10.021.
  • 31. Nie F., Dong H., Chen S., Li P., Wang L., Zhao Z., Li X., Zhang H. Microstructure and mechanical properties of pulse MIG welded 6061/A356 aluminum alloy dissimilar butt joints. Journal of Materials Science & Technology, 2018; 34(3): 551–560. https://doi.org/10.1016/j.jmst.2016.11.004.
  • 32. Sevim I., Hayat F., Kaya Y., Kahraman N., Şahin S. The study of MIG weldability of heat-treated aluminum alloys. The International Journal of Advanced Manufacturing Technology, 2013; 66: 1825–1834. https://doi.org/10.1007/s00170-012-4462-z.
  • 33. Korzhik V.N. Theoretical analysis of amorphization conditions for metallic alloys under gas-thermal spraying. III. Transformations in the amorphized alloy under building-up of coatings. Poroshkovaya Metallurgiya, 1992; 11: 47–52.
  • 34. Jing H., Shi Y., Gang Zh., Volodymyr K., Le W.-Y. Minimizing defects and controlling the morphology of laser welded aluminum alloys using power modulation-based laser beam oscillation. Journal of Manufacturing Processes, 2022; 83: 49–59. http://dx.doi.org/10.1016/j.jmapro.2022.08.031.
  • 35. Gu Y., Xu Y., Shi Y., Feng C., Volodymyr K. Corrosion resistance of 316 stainless steel in a simulated pressurized water reactor improved by laser cladding with chromium. Surface and Coatings Technology, 2022; 441: 128534. https://doi.org/10.1016/j.surfcoat.2022.128534.
  • 36. Pan D., Pan Q., Yu Q., Li G., Liu B., Deng Y., Liu H. Microstructure and fatigue behavior of MIG-welded joints of 6005A aluminum alloy with trace amounts of scandium. Materials Characterization, 2022; 194: 112482. https://doi.org/10.1016/j.matchar.2022.112482.
  • 37. Fialko N., Dinzhos R., Sherenkovskaya G., Lazarenko M., Makhrovskyi V. Influence on the thermophysical properties of nanocomposites of the duration of mixing of components in the polymer melt. Eastern-European Journal of Enterprise Technologies, 2022; 2(5–116): 25–30. https://doi.org/10.15587/1729-4061.2022.255830.
  • 38. Liu S., Liu Z., Wang H., Liang J., Zhu X. Study on microstructure and mechanical properties of 5052 aluminum alloy MIG welded joint for high-speed train. Materials Research Express, 2024; 11(8): 086507. https://doi.org/10.1088/2053-1591/ad6b01.
  • 39. Yi J., Cao S.-F., Li L.-X., Guo P.-C., Liu K.-Y. Effect of welding current on morphology and microstructure of Al alloy T-joint in double-pulsed MIG welding. Transactions of Nonferrous Metals Society of China, 2015; 25(10): 3204–3211. https://doi.org/10.1016/S1003-6326(15)63953-X.
  • 40. Han S.G., Zheng S.D., Cai D.T., Yi Y.Y., Luo Z.Y. Microstructure characteristics and properties of 1561 aluminum alloy weldments processed by different MIG welding. Materials Science Forum, 2017; 893: 163–168. https://doi.org/10.4028/www.scientific.net/MSF.893.163.
  • 41. Skorokhod A.Z., Sviridova I.S., Korzhik V.N. Structural and mechanical properties of polyethylene terephthalate coatings as affected by mechanical pretreatment of powder in the course of preparation. Mekhanika Kompozitnykh Materialov, 1994; 30(4): 455–463.
  • 42. Zhernosekov A., Fedorchuk V., Novomlynets O. Regulation of current pulse parameters during MIG welding of aluminum alloys. Technical Sciences and Technologies, 2022; 2(28): 31–37. https://doi.org/10.25140/2411-5363-2022-2(28)-31-37.
  • 43. Nie J., Meng X.-F., Shi Y. Study on evaluation method of aluminum alloy pulse MIG welding stability based on arc voltage probability density, Journal of Signal and Information Processing, 2011; 2(3): 159–164. https://doi.org/10.4236/jsip.2011.23020.
  • 44. Borisov Yu.S., Kunitskii Yu.A., Korzhik V.N., Yaprakova M.G. Structure and some physical properties of plasma sprayed coatings of the nickel boride NiB. Soviet Powder Metallurgy and Metal Ceramics, 1986; 25(12): 966–969.
  • 45. ISO 10042:2018. Welding – Arc welded joints in aluminium and its alloys — Quality levels for imperfections. Access mode: https://www.iso.org/standard/70566.html.
  • 46. Mohammadtaheri M. A New metallographic technique for revealing grain boundaries in aluminum alloys. Metallography Microstructure and Analysis, 2012; 1(5): 224–226. https://doi.org/10.1007/s13632-012-0033-9.
  • 47. Lin C.-W., Hung F.-Y., Lui T.-S. Microstructure evolution and microstructural characteristics of Al–Mg–Si aluminum alloys fabricated by a modified strain-induced melting activation process. Metals, 2018; 8(1): 3. https://doi.org/10.3390/met8010003.
  • 48. Tanaka T., Morishige T., Hirata T. Comprehensive analysis of joint strength for dissimilar friction stir welds of mild steel to aluminum alloys. Scripta Materialia, 2009; 61(7): 756–759. https://doi.org/10.1016/j.scriptamat.2009.06.022.
  • 49. Standard Guide for Preparation of Metallographic Specimens (2011). Copyright © ASTM International, 100 Barr Harbor Drive, PO Box C700, West Conshohocken, PA 19428 2959. United States. https://doi.org/10.1520/E0003-11.
  • 50. Skorokhod A.Z., Sviridova I.S., Korzhik V.N. The effect of mechanical pretreatment of polyethylene terephthalate powder on the structural and mechanical properties of coatings made from it. Mechanics of Composite Materials, 1995; 30(4): 328–334. https://doi.org/10.1007/BF00634755.
  • 51. Mohammadtaheri M. A New Metallographic Technique for Revealing Grain Boundaries in Aluminum Alloys. Metallography Microstructure and Analysis, 2012; 1: 224–226. https://doi.org/10.1007/s13632-012-0033-9.
  • 52. Fialko N., Dinzhos R., Sherenkovskii J., Meranova N., Aloshko S., Izvorska D., Korzhyk V., Lazarenko M., Mankus I., Nedbaievska L. Establishment of regularities of influence on the specific heat capacity and thermal diffusivity of polymer nanocomposites of a complex of defining parameters. Eastern-European Journal of Enterprise Technologies, 2021; 6(12(114)): 6–12. http://dx.doi.org/10.15587/1729-4061.2021.245274.
  • 53. Čičo P., Kalincová D., Kotus M. Influence of welding method on microstructural creation of welded joints. Research in Agricultural Engineering, 2011; 57(Special Issue). http://dx.doi.org/10.17221/57/2010-RAE.
  • 54. Fialko N., Dinzhos R., Sherenkovskii J., Meranova N., Korzhyk V., Lazarenko M., Koseva N. Establishing patterns in the effect of temperature regime when manufacturing nanocomposites on their heat-conducting properties. Eastern-European Journal of Enterprise Technologies, 2021; 4(5(112)): 21–26. http://dx.doi.org/10.15587/1729-4061.2021.236915.
  • 55. Akca E., Trgo E. Metallographic procedures and analysis – A review. Periodicals of Engineering and Natural Sciences (PEN), 2015; 3(2): 9–11. https://doi.org/10.21533/pen.v3i2.51.
  • 56. Yasuda K. MIG welding of aluminium alloys. Welding International, 1991; 5(8): 614–617. https://doi.org/10.1080/09507119109446786.
  • 57. Wu L., Han X., Wu X., Wu Y., Chen J., Su H., Wu C. The study of high-speed MIG welding assisted by compound external magnetic fields for 6N01-T6 aluminum alloy. Journal of Manufacturing Processes, 2022; 83: 576–589. https://doi.org/10.1016/j.jmapro.2022.09.028.
  • 58. Pépe N., Egerland S., Colegrove P.A., Yapp D., Leonhartsberger A., Scotti A. Measuring the process efficiency of controlled gas metal arc welding processes. Science and Technology of Welding and Joining, 2011; 16(5): 412–417. https://doi.org/10.1179/1362171810Y.0000000029.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-6a1ef1b9-f382-4850-8185-8342bb7c394d
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.