PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Potential design improvements of a reverse flow mini-cyclone with a tangential inlet

Autorzy
Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
This paper presents an effect of general dimensions of a reverse flow mini-cyclone with a tangential inlet on its separation efficiency. Several mini-cyclone design modifications are presented and evaluated for use in the air filtration systems of motor vehicles. Local design improvements of three components of a reverse flow mini-cyclone with a tangential inlet D-40 of an air filter fitted in an all-terrain vehicle engine were introduced. An asymmetric curvilinear shape of an outlet port was used instead of a symmetrical shape. An outlet vortex finder inlet port shape was streamlined, and a cylindrical outlet vortex finder of the cyclone was replaced with a conical one. Experimental evaluation of the effects of the design improvements of mini-cyclone on its separation efficiency and performance as well as flow resistance was carried out. Separation efficiency of the cyclone was determined using the mass method as a product of dust mass retained by the mini-cyclone and supplied to the mini-cyclone in a specified time. Separation performance of the cyclone was determined as the largest dust particle dz =dzmax in a specific test cycle in the cyclone outlet air stream. A polydisperse PTC-D test dust used in Poland, a substitute for AC-fine test dust was used. Dust concentration at the mini-cyclone inlet was kept at 1 g/m3. The size and total number of dust particles in the air stream at the outlet of the original mini-cyclone and at the outlet of the improved mini-cyclone was determined using a particle counter.
Rocznik
Strony
15–--31
Opis fizyczny
Bibliogr. 41 poz., rys.
Twórcy
autor
  • Faculty of Mechanical Engineering, Military University of Technology, ul. Gen. Witolda Urbanowicza 2, 00-908 Warsaw, Poland
Bibliografia
  • 1. Azadi M., Azadi M., 2012. An analytical study of the effect of inlet velocity on the cyclone performance using mathematical models. Powder Technol., 217, 121–127. DOI: 10.1016/j.powtec.2011.10.017.
  • 2. Baczewski K., Hebda M., 1991/92. Filtracja płynów eksploatacyjnych. Radom, MCNEMT (in Polish).
  • 3. Bernardo S., Mori M., Peres A.P., Dionısio R.P., 2006. 3-D computational fluid dynamics for gas and gas-particle flows in a cyclone with different inlet section angles. Powder Technol., 162, 190–200. DOI: 10.1016/j.powtec. 2005.11.007.
  • 4. Bukowski J., 1968. Mechanika płynów. Warszawa, PWN (in Polish).
  • 5. Cenrtisep Air Cleaner. 2004. PALL Corporation, USA.
  • 6. Chu K.W.,Wang B., Xu D.L., Chen Y.X., Yu A.B., 2011. CFD–DEM simulation of the gas–solid flow in a cyclone separator. Chem. Eng. Sci., 66, 834–847. DOI: 10.1016/j.ces.2010.11.026.
  • 7. Cortés C., Gil A., 2007. Modeling the gas and particle flow inside cyclone separators. Prog. Energy Combust. Sci., 33, 409–452. DOI: 10.1016/j.pecs.2007.02.001.
  • 8. Durst M., Klein G., Moser N., 2005. Filtration in Fahrzeugen. Ludwigsburg, Deutschland.
  • 9. Dzier˙zanowski P., Kordzi´nski W., Oty´s J., Szczeci´nski S., Wiatrek R., 1985. Nap˛edy lotnicze. Turbinowe silniki s´migłowe i s´migłowcowe. Warszawa, Wydawnictwa Komunikacji i Ła˛cznos´ci (in Polish).
  • 10. Dziubak T., 2012. The assessment of the possibilities of improvement of the extraction evenness in multicyclone dedusters fitted in special vehicles. Combustion Engines, 4, 151, 34–42.
  • 11. Dziubak T., 2009. The problems of the inlet air filtration in the special vehicles combustion engines. III International Congress on Combustion Engines, Opole 22-24.06.2009. Combustion Engines, 2009-SC1, 115–123.
  • 12. Dziubak T., 2006. Modification of returnable cyclone with a tangent inlet construction. Bulletin of the Military University of Technology, LV, 2, 279–301.
  • 13. Dziubak T., 2004. The experimental assessment of constructional changes of motor vehicle air filter. Bulletin of the Military University of Technology, LIII, 10, 121–138.
  • 14. Dziubak T., 2000. The problems of the air filtration in the vehicle engines exploitated in large pollution conditions. Zagadnienia Eksploatacji Maszyn, 35 (4), 181–197 (in Polish).
  • 15. Dziubak T., 1995. Experimental investigation of returnable minicyclone with tangential inlet. Bulletin of the Military University of Technology, XLIV, 3/4, 113–125.
  • 16. Hoffmann A.C., Arends H., Sie H., 1991. An experimental investigation elucidating the nature of the effect of solids loading on cyclone performance. Filtr. Sep., 28, 188-193. DOI: 10.1016/0015-1882(91)80074-F.
  • 17. Honeywell International Inc., 2000. AGT1500 Turbine Technology, Honeywell International Inc., USA. Available at: www.honeywell.com.
  • 18. Jiao J., Zheng Y., Sun G.,Wang J., 2006. Study of the separation efficiency and the flow field of a dynamic cyclone. Sep. Purif. Technol., 49, 157–166. DOI: 10.1016/j.seppur.2005.09.011.
  • 19. Jo Y., Tien Ch., Ray M.B., 2000. Development of a post cyclone to improve the efficiency of reverse flow cyclones. Powder Technol., 113, 97-108. DOI: 10.1016/S0032-5910(00)00206-0.
  • 20. Juda J., 1968. Pomiary zapylenia i technika odpylania. Warszawa, WNT (in Polish).
  • 21. Jung Ch.H., Xiang R.B., Kim M.C., Lim K.S., Lee K.W., 2004. Performance evaluation of a cyclone with granular packed beds. J. Aerosol Sci., 35, 1483–1496. DOI: 10.1016/j.jaerosci.2004.06.076.
  • 22. Kabsch P., 1992. Odpylanie i odpylacze. Warszawa, WNT (in Polish).
  • 23. Karagoz I., Avci A., Surmen A., Sendogan O., 2013. Design and performance valuation of a new cyclone separator. J. Aerosol Sci., 59, 57–64. DOI: 10.1016/j.jaerosci.2013.01.010.
  • 24. Kobyłecki R., 2011. Unburned carbon in the circulating fluidised bed boiler fly ash. Chem. Process Eng., 32, 255–266. DOI: 10.2478/v10176-011-0020-8.
  • 25. Krasiński A., 2007. Estimation of operation parameters of cyclones based on the CFD simulations. Chem. Process Eng., 28, 4, 961–972.
  • 26. Lim K.S., Kim H.S., Lee K.W., 2004. Characteristics of the collection efficiency for a cyclone with different tube shapes. J. Aerosol Sci., 35, 743–754. DOI: 10.1016/j.jaerosci.2003.12.002.
  • 27. Lim K.S., Kwon S.B., Lee K.W., 2003 Characteristics of the collection efficiency for a double cyclone with clean air inlet. J. Aerosol Sci., 34, 1085–1095. DOI: 10.1016/S0021-8502(03)00079-X.
  • 28. Liu Z., Zheng Y., Jia L., Jiao J., Zhang O., 2006. Stereoscopic PIV studies on the swirling flow structure in a gas cyclone. Chem. Eng. Sci., 61, 4252–4261. DOI: 10.1016/j.ces.2006.01.024.
  • 29. Ma L., Ingham D.B., Wen X,. 2000. Numerical modelling of the fluid and particle penetration through small sampling cyclones. J. Aerosol Sci., 31, 1097–1119. DOI: 10.1016/S0021-8502(00)00016-1.
  • 30. PN-S-34040, Silniki spalinowe. Filtry powietrza. Wymagania i badania. PKN, 1996.
  • 31. Sakura G.B., Leung A.Y.T., 2015. CFD simulation of cyclone separators to reduce air pollution. Powder Technol., 286, 488–506. DOI: 10.1016/j.powtec.2015.08.023.
  • 32. Swift P., 1986. An empirical approach to cyclone design and application. Filtr. Sep., 23, 1, 24–27.
  • 33. Szczeciński S., 2009. The problems of filtration of inlet air for turbine helicopter engines. Trans. Aviation Institute, 199, 25–30.
  • 34. Wang B., Xu D.L., Chu K.W., Yu A.B., 2006. Numerical study of gas–solid flow in a cyclone separator. Appl. Math. Modell., 30, 1326–1342. DOI: 10.1016/j.apm.2006.03.011.
  • 35. Wasilewski M., Duda J., 2016. Multicriteria optimisation of first-stage cyclones in the clinker burning system by means of numerical modelling and experimental research. Powder Technol., 289, 143–158. DOI: 10.1016/j.powtec. 2015.11.018.
  • 36. Warych J., 1998. Oczyszczanie gazów – procesy i aparatura. Warszawa, WNT (in Polish).
  • 37. Winfield D., Cross M., Croft N., Paddison D., Craig I., 2013. Performance comparison of a single and triple tangential inlet gas separation cyclone: A CFD study. Powder Technol., 235, 520–531. DOI: 10.1016/j.powtec. 2012.10.026.
  • 38. Qian F., Zhang J., Zhang M., 2006. Effects of the prolonged vertical tube on the separation performance of a cyclone. J. Hazard. Mater., 136, 822–829. DOI: 10.1016/j.jhazmat.2006.01.028
  • 39. Yoshida H., Ono K., Fukui K., 2005. The effect of a new method of fluid flow control on submicron particle classification in gas-cyclones. Powder Technol., 149, 139–147. DOI: 10.1016/j.powtec.2004.10.005
  • 40. Zhao B., Shen H., Kang Y., 2004. Development of a symmetrical spiral inlet to improve cyclone separator performance Powder Technol., 145, 47–50. DOI: 10.1016/j.powtec.2004.06.001.
  • 41. Zhu Y., Kim M.C., Lee K.W., Park Y.O., Kuhlman M.R., 2001. Design and performance evaluation of a novel double cyclone. Aerosol Sci. Technol., 34, 373–380. DOI: 10.1080/02786820120723.
Uwagi
PL
Opracowanie rekordu w ramach umowy 509/P-DUN/2018 ze środków MNiSW przeznaczonych na działalność upowszechniającą naukę (2018).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-67dba07f-f5b0-4b62-b2ed-72cba0bcbbe5
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.