PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Prediction of brittle fracture propagation behaviour of hydroxyapatite (HAp) coating in artificial femoral stem component

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
Purpose: This study addresses the brittle fracture propagation behaviour modelling of hydroxyapatite (HAp) coating in artificial femoral stem component. Design/methodology/approach: A simple two dimensional flat-on-flat contact configuration finite element model consisting contact pad (bone), Ti-6Al-4V substrate and HAp coating is employed in static simulation. The HAp coating is modelled as elastic layer with pre-microcrack which assumed to be initiated due to stress singularity. Findings: The study revealed that reducing coating thickness, pre-microcrack length and artificial femoral stem elastic modulus along with increasing bone elastic modulus will result in significant stress intensity factor (SIF) to promote brittle fracture propagation behaviour. Research limitations/implications: The influence of coating thickness, pre-microcrack length, bone and artificial femoral stem elastic modulus on fracture behaviour is examined under different stress ratio using J-integral analysis approach. Practical implications: The proposed finite element model can be easily accommodating different Hap coating thickness, pre-microcrack length, bone and artificial femoral stem elastic modulus to perform detailed parametric studies with minimal costly experimental works. Originality/value: Limited research focussing on brittle fracture propagation behaviour of HAp coating in artificial femoral stem component. Thus, present study analysed the influence of coating thickness, pre-microcrack length, bone and artificial femoral stem elastic modulus on stress intensity factor (SIF) of HAp coating.
Rocznik
Strony
34--41
Opis fizyczny
Bibliogr. 27 poz.
Twórcy
autor
  • School of Engineering, UOW Malaysia KDU University College, Shah Alam, Selangor, Malaysia
autor
  • School of Computer Science and Engineering, Faculty of Innovation and Technology, Taylor’s University, Taylor’s Lakeside Campus, Subang Jaya, Selangor, Malaysia
autor
  • School of Computer Science and Engineering, Faculty of Innovation and Technology, Taylor’s University, Taylor’s Lakeside Campus, Subang Jaya, Selangor, Malaysia
Bibliografia
  • [1] C. Palazzo, C. Nguyen, M. M. Lefevre-Colau, F. Rannou, S. Poiraudeau, Risk factors and burden of osteoarthritis, Annals of Physical and Rehabilitation Medicine 59/3 (2016) 134-138. DOI: https://doi.org/10.1016/j.rehab.2016.01.006
  • [2] N. de l’Escalopier, P. Anract, D. Biau, Surgical treatments for osteoarthritis, Annals of Physical and Rehabilitation Medicine 59/3 (2016) 227-233. DOI: https://doi.org/10.1016/j.rehab.2016.04.003
  • [3] M.J. Lespasio, A.A. Sultan, N.S. Piuzzi, A. Khlopas, M.E. Husni, G.F. Muschler, M.A. Mont, Hip osteo-arthritis: a primer, The Permanente Journal 22/1 (2018) 17-084. DOI: https://doi.org/10.7812/TPP/17-084
  • [4] K.D. Allen, Y.M. Golightly, Epidemiology of osteoarthritis: state of the evidence, Current Opinion in Rheumatology 27/3 (2015) 276-283. DOI: https://doi.org/10.1097/BOR.0000000000000161
  • [5] M. Nagentrau, A.M. Tobi, S. Jamian, Y. Otsuka, R. Hussin, Delamination-fretting wear failure evaluation at HAp-Ti-6Al–4V interface of uncemented artificial hip implant, Journal of the Mechanical Behavior of Biomedical Materials 122 (2021) 104657. DOI: https://doi.org/10.1016/j.jmbbm.2021.104657
  • [6] D. Apostu, O. Lucaciu, C. Berce, D. Lucaciu, D. Cosma, Current methods of preventing aseptic loosening and improving osseointegration of titanium implants in cementless total hip arthroplasty: a review, Journal of International Medical Research 46/6 (2018) 2104-2119. DOI: https://doi.org/10.1177/0300060517732697
  • [7] S.K. Fokter, A. Moličnik, R. Kavalar, P. Pelicon, R. Rudolf, N. Gubeljak, Why do some titanium-alloy total hip arthroplasty modular necks fail?, Journal of the Mechanical Behavior of Biomedical Materials 69 (2017) 107-114. DOI: https://doi.org/10.1016/j.jmbbm.2016.12.012
  • [8] M.A. Malahias, L. Kostretzis, A. Greenberg, V.S. Nikolaou, A. Atrey, P.K. Sculco, Highly porous titanium acetabular components in primary and revision total hip arthroplasty: a systematic review, The Journal of Arthroplasty 35/6 (2020) 1737-1749. DOI: https://doi.org/10.1016/j.arth.2020.01.052
  • [9] M. Nagentrau, A.L.M. Tobi, S. Jamian, Y. Otsuka, HAp Coated Hip Prosthesis Contact Pressure Prediction Using FEM Analysis, Materials Science Forum 991 (2020) 53-61. DOI: https://doi.org/10.4028/www.scientific.net/MSF.991.53
  • [10] M. Nagentrau, A.L.M. Tobi, S. Jamian, Y. Otsuka, Contact slip prediction in HAp coated artificial hip implant using finite element analysis, Mechanical Engineering Journal 6/3 (2019) 18-00562. DOI: https://doi.org/10.1299/mej.18-00562
  • [11] T. Laonapakul, A.R. Nimkerdphol, Y. Otsuka, Y. Mutoh, Failure behavior of plasma-sprayed HAp coating on commercially pure titanium substrate in simulated body fluid (SBF) under bending load, Journal of the Mechanical Behavior of Biomedical Materials 15 (2012) 153-166. DOI: https://doi.org/10.1016/j.jmbbm.2012.05.017
  • [12] Y. Otsuka, D. Kojima, Y. Mutoh, Prediction of cyclic delamination lives of plasma-sprayed hydroxyapatite coating on Ti–6Al–4V substrates with considering wear and dissolutions, Journal of the Mechanical Behavior of Biomedical Materials 64 (2016) 113-124. DOI: https://doi.org/10.1016/j.jmbbm.2016.07.026
  • [13] Y. Otsuka, D. Kojima, Y. Miyashita, Y. Mutoh, Cyclic delamination life prediction model for plasma-sprayed hydroxyapatite coating on ti substrate under simulated body fluid, Materials Science and Engineering: C 67 (2016) 533-541. DOI: https://doi.org/10.1016/j.msec.2016.05.058
  • [14] Y. Otsuka, Y. Miyashita, Y. Mutoh, Effects of delamination on fretting wear behaviors of plasma-sprayed hydroxyapatite coating, Mechanical Engineering Journal 3/2 (2016) 15-00573. DOI: https://doi.org/10.1299/mej.15-00573
  • [15] F. Liu, Micro-CT and Micro-FE analysis of stress transfer of femoral stems, PhD Thesis, Ludwig Maximilian University of Munich, Munich, 2021.
  • [16] S. Marković, M.J. Lukić, S.D. Škapin, B. Stojanović, D. Uskoković, Designing, fabrication and characterization of nanostructured functionally graded HAp/BCP ceramics, Ceramics International 41/2/B (2015) 2654-2667. DOI: https://doi.org/10.1016/j.ceramint.2014.10.079
  • [17] A.R. Nimkerdphol, Y. Otsuka, Y. Mutoh, Effect of dissolution/precipitation on the residual stress redistribution of plasma-sprayed hydroxyapatite coating on titanium substrate in simulated body fluid (SBF), Journal of the Mechanical Behavior of Biomedical Materials 36 (2014) 98-108. DOI: https://doi.org/10.1016/j.jmbbm.2014.04.007
  • [18] Y. Su, K. Li, L. Zhang, C. Wang, Y. Zhang, Effect of the hydroxyapatite particle size on the properties of sprayed coating, Surface and Coatings Technology 352 (2018) 619-626. DOI: https://doi.org/10.1016/j.surfcoat.2018.08.052
  • [19] W.A. Siswanto, M. Nagentrau, A.M. Tobi, M.N. Tamin, Prediction of plastic deformation under contact condition by quasi-static and dynamic simulations using explicit finite element analysis, Journal of Mechanical Science and Technology 30/11 (2016) 5093-5101. DOI: https://doi.org/10.1007/s12206-016- 1027-3
  • [20] M. Nagentrau, W.A. Siswanto, M. Tobi, A. Latif, Predicting the sliding amplitude of plastic deformation in the reciprocating sliding contact, ARPN Journal of Engineering and Applied Sciences 11/4 (2016) 2266- 2271.
  • [21] W.A. Siswanto, M. Nagentrau, M. Tobi, A. Latif, Prediction of residual stress using explicit finite element method, Journal of Mechanical Engineering and Sciences 9 (2015) 1556-1570. DOI: http://dx.doi.org/10.15282/jmes.9.2015.3.0151
  • [22] M.L. Mohsin, A.L.M. Tobi, W.A. Siswanto, M. N. Tamin, Finite element analysis of stress intensity factor of pre-cracked coated substrate under contact sliding, Proceedings of the 36th International Electronics Manufacturing Technology Conference, Johor, Malaysia, 2014, 1-4. DOI: https://doi.org/10.1109/IEMT.2014.7123099
  • [23] A.M. Tobi, P.H. Shipway, S.B. Leen, Finite element modelling of brittle fracture of thick coatings under normal and tangential loading, Tribology International 58 (2013) 29-39. DOI: https://doi.org/10.1016/j.triboint.2012.08.024
  • [24] R.A. Mahdavinejad, Prediction of cannon barrel life, Journal of Achievements in Materials and Manufacturing Engineering 30/1 (2008) 11-18.
  • [25] M. Szutkowska, M. Boniecki, Crack growth resistance of Al2O3-ZrO2 (nano)(12 mol% CeO2) ceramics, Journal of Achievements in Materials and Manufacturing Engineering 22/1 (2007) 41-44.
  • [26] D. Kwiatkowski, J. Nabiałek, P. Postawa, Influence of injection moulding parameters on resistance for cracking on example of PP, Journal of Achievements in Materials and Manufacturing Engineering 17/1-2 (2006) 97-100.
  • [27] T.M. Lenkovskiy, V.V. Kulyk, Z.A. Duriagina, L. V. Dzyubyk, V.V. Vira, A.R. Dzyubyk, T.L. Tepla, Finite elements analysis of the side grooved I-beam specimen for mode II fatigue crack growth rates determination, Journal of Achievements in Materials and Manufacturing Engineering 86/2 (2018) 70-77. DOI: https://doi.org/10.5604/01.3001.0011.8238
Uwagi
PL
Opracowanie rekordu ze środków MEiN, umowa nr SONP/SP/546092/2022 w ramach programu "Społeczna odpowiedzialność nauki" - moduł: Popularyzacja nauki i promocja sportu (2022-2023).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-67766637-facd-4420-a2fa-5e604da5e513
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.