Tytuł artykułu
Autorzy
Treść / Zawartość
Pełne teksty:
Identyfikatory
Warianty tytułu
Języki publikacji
Abstrakty
Materials like polyvinyl chloride (PVC), polypropylene (PP), ultra high molecular weight polyethylene (UHMW-PE) are used for the construction of drinking water supply systems. It was found that regardless of the type of material the distribution network is built of, microorganisms formed biofilms on every available surface. The pipes material plays a key role in terms of biofilm formation. Important factors are the surface roughness, adhesives, plasticizers, stabilizers, which can be a source of nutrients for bacteria. The metabolic activity of microorganisms on polymer materials, induces migration of compounds from the material into water. The aim of this study was to present the differences in the structure and the metabolic profile of biofilm formed on the technical materials.
Słowa kluczowe
Czasopismo
Rocznik
Tom
Strony
284--293
Opis fizyczny
Bibliogr. 27 poz., tab., rys.
Twórcy
autor
- Institute for Ecology of Industrial Areas, Poland, Kossutha 6, 40-844 Katowice, Poland
autor
- Wrocław University of Science and Technology, Poland, Wybrzeże Wyspiańskiego 27, 50-370 Wrocław, Poland
autor
- Institute for Ecology of Industrial Areas, Poland, Kossutha 6, 40-844 Katowice, Poland
autor
- Institute for Ecology of Industrial Areas, Poland, Kossutha 6, 40-844 Katowice, Poland
Bibliografia
- 1. Batté M., Appenzeller B., Grandjean D., Fass S., Gauthier V., Jorand F., Mathieu L., Boualam M., Saby S., Block J. 2003. Biofilms in drinking water distribution systems. Rev. Environ. Sci. Biotechnol. 2, 147–168.
- 2. Bellon J., Honduvilla N., Jurado F., Carranza A., Bujan J. 2001. In vitro interaction of bacteria with polypropylene/ePTFE prostheses. Biomaterals. 14, 2021–2024.
- 3. Boe-Hansen R., Albrechtsen H., Arvin E., Jorgensen C. 2002. Bulk water phase and biofilm growth in drinking water at low nutrient conditions. Water Research .36, 4477–4486.
- 4. Chandy J., Angles M. 2001. Determination of nutrients limiting biofilm formation and the subsequent impact on disinfectant decay. WaterResearch. 35, 2677–2682.
- 5. Chavant, P., Martinie, B., Meylheuc, T., Bellon- Fontaine M. N., Hebraud, M. 2002. Listeria monocytogenes LO28: Surface physicochemical properties and ability to form biofilms at different temperatures and growth phases. Appl. Environ. Microbiol. 68, 728–737.
- 6. Djordjevic, D., Wiedmann, M., McLandsborough, L. 2002. Microtiter plate assay for assessment of Listeria monocytogenesbiofilm formation. Appl. Environ. Microbiol. 68, 2950–2958.
- 7. Donlan, R. (2002). Biofilms: Microbial life on surfaces. Emerging Infectious Diseases. 8, 881–890.
- 8. Farber, B., Hsieh, H., Donnenfeld, E., Perry, H., Epstein, A., Wolff, A. 1995. A novel antibiofilm technology for contact lens solution. Opthalmology. 102, 831–836.
- 9. Henne, K., Kahlisch, L., Brettar, I., Höfle, M.G. 2012. Analysis of structure and composition of bacterial core communities in mature drinking water biofilms and bulk water of a citywide network in Germany. Applied and Environmental Microbiology. 78, 3530–3538.
- 10. Leroy, C., Delbarre-Ladrat, C., Ghillebaert, F., Rochet, M., Compere, C., Combes, D. 2007. A marine bacterial adhesion microplate test using DAPI fluorescent dye: a new method to screen antifouling agents. Letters in applied microbiology. 44, 372–379.
- 11. Manuel, C., Nunes, O., Melo, L. (2007). Dynamics of drinking water biofilm in flow/non-flow conditions. Water Research. 41, 551–562.
- 12. Momba, M., Makala, N. 2004. Comparing the effect of various pipe materials on biofilm formation in chlorinated and combined chlorine-chloraminated water systems. Water S. A. 30, 175–182.
- 13. Morrow, J.B., Almeida, J.L. (2008). Association and decontamination of Bacillus spores in a simulated drinking water system. Water Research. 42, 5011–5021.
- 14. Moskovitz, J., Rahman, A., Strassman, J., Yanacey, S., Kushner, S., Brot, N., Weissbach, H. (1995). Escherichia coli peptide methionine sulfoxide reductase gene: regulation of expression and role in protecting against oxidative damage. J. Bacteriol. 177, 502–507.
- 15. Nikolaev, A., Yu, A., Plakunov, V.K. 2007. Biofilm “City of microbes” or an analogue of multicellular organisms? Microbiol. 76, 125–138.
- 16. Parizzi, S., de Andrade, N., de Sá Silva, C., Soares, N., da Silva, E. 2004. Bacterial adherence to different inert surfaces evaluated by epifluorescence microscopy and plate count method. Braz. Arch. Biol.Technol. 47, 77–83.
- 17. Rodriguez, D., Penuela, G., Morato, J. 2013. Evaluation of the biocidal potential of hydrogen peroxide and copper sulphate for biofilm removal in drinking water systems. Produccion+Limpia. 8, 9–18.
- 18. Schwartz, T., Hoffmann, S., Obst, U. 2003. Formation of natural biofilms during chlorine dioxide and UV disinfection in a public drinking water distribution system. 95, 591–601.
- 19. Simoes, L., Simoes, M., Olviera, R., Vieira, M. 2007. Potential of the adhesion of bacteria isolated from drinking water to materials. Journal of Basic Microbiology. 47, 174–183.
- 20. Sitarska, M., Traczewska, T. 2009. Development of biofilm on synthetic polymers used in water distribution. Environ. Prot. Eng. 35, 151–159.
- 21. Skjevrak, I., Due, A., Gjerstad, K., Herikstad H. 2003. Volatile organic components migrating from plastic pipes (HDPE, PEX and PVC) into drinking water. Water Research. 37, 1912–1920.
- 22. Skjevrak, I., Lund, V., Ormerod, K., Herikstad, H. 2005. Volatile organic compounds in natural biofilm in polyethylene pipes supplied with lake water and treated water from the distribution network. WaterResearch. 39, 4133–4141.
- 23. Takahashi, H., Suda, T., Tanaka, Y., Kimura, B. 2010. Cellular hydrophobicity of Listeria monocytogenes involves initial attachment and biofilm formation on the surface of polyvinyl chloride. Letters in Applied Microbiology. 50, 618–625.
- 24. Traczewska, T., Sitarska, M. 2012. Wpływ struktury fizycznej podłoża na rozwój błony biologicznej. Ochron przed Korozją. 1, 15–19.
- 25. van der Kooij, D., Vrouwenvelder, H., Veenendaal, H. 1995. Kinetic aspects of biofilm formation on surfaces exposed to drinking water. Water Science and Technology. 32, 61–65.
- 26. Wotton R. 2011. EPS (Extracellular Polymeric Substances), silk, and chitin: vitally important exudates in aquatic ecosystems. Journal of the North American Benthological Society. 30, 762–769.
- 27. Yu, J., Kim, D., Lee, T. 2010. Microbial diversity in biofilms on water distribution pipes of different materials. Water Science & Technology, 61, 163–171.
Uwagi
PL
Opracowanie ze środków MNiSW w ramach umowy 812/P-DUN/2016 na działalność upowszechniającą naukę (zadania 2017).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-6698dd96-2fb1-4805-a781-faf2c26ae1d2