PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Automated UAV to Survey and Monitor Ionising Radiation Levels in a Closed Environment

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
Since tragedies caused by nuclear disasters are always a concern, it is essential that nuclear power plants be monitored on a regular basis for any irregularities in ionising radiation levels. Irrespective of leakage proof measures being deployed in the plant, ensuring the safety of these measures is necessary. Given this scenario, the present study proposes the usage of unmanned aerial vehicles (UAVs) to ensure that radiation levels in nuclear plants remain within safe limits. The UAV deployed will map the entire environment following a unique path planning algorithm and monitor the environment with an onboard radiation sensor. If any irregularities are detected, the positional coordinates are flagged, and the A* algorithm is implemented to generate the shortest path between the starting point, and the flagged coordinates, which are considered as the destination coordinates. The UAV is made to traverse the shortest path together with maintaining stability of the system while traversing.
Wydawca
Rocznik
Strony
134--145
Opis fizyczny
Bibliogr. 13 poz., rys.
Twórcy
autor
  • Otis Elevator Company, Research and Development, Bangalore, India
  • Department of Electronics and Communication Engineering, PES University, Bangalore, India
  • Department of Electronics and Communication Engineering, PES University, Bangalore, India
  • Department of Electronics and Communication Engineering, PES University, Bangalore, India
autor
  • School of Computer Science Engineering, RV University, Bangalore, India
Bibliografia
  • Aleotti J, Micconi G, Caselli S, Benassi G, Zambelli N, Calestani D, Zanichelli M, Bettelli M, Zappettini A (2015). Unmanned Aerial Vehicle Equipped with Spectroscopic CdZnTe Detector for Detection and Identification of Radiological and Nuclear Material. In: 2015 IEEE Nuclear Science Symposium and Medical Imaging Conference (NSS/MIC), pp. 1–5. San Diego, CA, USA.
  • Bhattacharyya, U. and Baum, C. (2018). Estimating the Location of a Nuclear Source in a Three-Dimensional Environment Using a Two-Stage Adaptive Algorithm. In: 2018 IEEE 8th Annual Computing and Communication Workshop and Conference (CCWC), pp. 8–14. Las Vegas, NV, USA.
  • Cai, C., Carter, B., Srivastava, M., Tsung, J., Vahedi-Faridi, J. and Wiley, C. (2016). Designing a Radiation Sensing UAV System. In: 2016 IEEE Systems and Information Engineering Design Symposium (SIEDS), pp. 165–169. Charlottesville, VA, USA.
  • Čerba, Š., Lüley, J., Vrban, B., Osuský, F. and Nečas, V. (2020). Unmanned Radiation-Monitoring System, IEEE Transactions on Nuclear Science, 67(4), pp. 636–643.
  • Duck, A., Munasinghe, K. S. and Reakes, T. (2017). Gas and Radiation Sensor Array for Deployment on UAV, ROV and as a Handheld Standalone Device. In: 2017 Eleventh International Conference on Sensing Technology (ICST), pp. 1–5. Sydney, NSW, Australia.
  • Hartman, J., Barzilov, A. and Novikov, I. (2015). Remote Sensing of Neutron and Gamma Radiation using Aerial Unmanned Autonomous System. In: 2015 IEEE Nuclear Science Symposium and Medical Imaging Conference (NSS/MIC), pp. 1–4. San Diego, CA, USA.
  • Krátký, V., Petráček, P., Báča, T. and Saska, M. (2021). An Autonomous Unmanned Aerial Vehicle System for Fast Exploration of Large Complex Indoor Environments. Journal of Field Robotics, 38, pp. 1036–1058.
  • Micconi, G., Aleotti, J. and Caselli, S. (2016). Evaluation of a Haptic Interface for UAV Teleoperation in Detection of Radiation Sources, 2016. In: 18th Mediterranean Electrotechnical Conference (MELECON), pp. 1–6. Lemesos, Cyprus.
  • Morita, T., Oyama, K., Mikoshi, T. and Nishizono, T. (2018). Decision Making Support of UAV Path Planning for Efficient Sensing in Radiation Dose Mapping. In: 2018 IEEE 42nd Annual Computer Software and Applications Conference (COMPSAC), pp. 333–338. Milwaukee, WI, USA.
  • Pani, R., Camera, F., Pergola, A., Polito, C., Falconi, R., Franciosini, G., Longo, M., Bettiol, M., Frantellizzi, V., de Vincentis, G., & Pani, A (2019). Novel Gamma Tracker for Rapid Radiation Direction Detection for UAV Drone Use. In: 2019 IEEE Nuclear Science Symposium and Medical Imaging Conference (NSS/MIC), pp. 1–3. Manchester, UK.
  • Reyes Munoz, A., Pastor Llorens, E., Barrado Muxi, C. and Gasull, M. (2015). Monitoring Radiological Incidents through an Opportunistic Network. IEEE Latin America Transactions, 13(1), pp. 54–61.
  • Rudolph, C., Knoedler, B. and Heinskill, J. (2020). Comparable Data Evaluation Method for a Radio-Nuclear Sensor When Used on an UAV. In: 2020 IEEE SENSORS, pp. 1–4. Rotterdam, Netherlands.
  • Seo, J.W., Han, S. H. and Young Shin, S. (2021). Deep Learning Based Nuclear Power Plant Monitoring System using UAV. In: 2021 International Conference on Electronics, Information, and Communication (ICEIC), pp. 1–4. Jeju, Korea (South).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-6664526d-d682-45a6-b44b-85c6a10f1b29
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.