PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Application of focusing systems to the protection of information during data transmission in the zone of direct radio visibility

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
It is shown that focusing systems built on the basis of a system of radio receivers spaced apart in space and simulating the operation of a lens can be used to ensure the protection of information during data transmission in the direct radio visibility zone. The synthesis of the lens equivalent in this case is carried out by using a system of phase shifters that change the phase of the oscillations arriving at each of the receivers, so that the receiving system is tuned to a radio wave source located at a specific point in space. In this case, information protection is provided according to the “friend or foe” principle, and any commands coming from other areas of space, except for the point where the authorized operator is located, are ignored. The advantage of this approach is the ability to partially or completely abandon the use of cryptographic methods. It is shown that the proposed approach is of considerable interest for ensuring the stable operation of groups of unmanned aerial vehicles from the point of view of the possibility of intercepting control using electronic warfare methods.
Twórcy
  • Almaty University of Power Engineering and Telecommunications named after Gumarbek Daukeev
  • Almaty University of Power Engineering and Telecommunications named after Gumarbek Daukeev
  • National Engineering Academy of the Republic of Kazakhstan
  • National Engineering Academy of the Republic of Kazakhstan
Bibliografia
  • [1] J. M. Hamamreh, H. M. Furqan, and H. Arslan, “Classifications and Applications of Physical Layer Security Techniques for Confidentiality: A Comprehensive Survey,” IEEE Communications Surveys and Tutorials, vol. 21, no. 2, 2019, https://doi.org/10.1109/COMST.2018.2878035.
  • [2] D. Wang, B. Bai, W. Zhao, and Z. Han, “A Survey of Optimization Approaches for Wireless Physical Layer Security,” IEEE Communications Surveys & Tutorials, vol. 21, no. 2, pp. 1878-1911, 2018.
  • [3] M. Zoli, M. Mitev, A. N. Barreto, and G. Fettweis, “Estimation of the secret key rate in wideband wireless physical-layer-security,” in Proceedings of the International Symposium on Wireless Communication Systems, 2021. https://doi.org/10.1109/ISWCS49558.2021.9562135.
  • [4] G. UDEANU, A. DOBRESCU, and M. OLTEAN, “UNMANNED AERIAL VEHICLE IN MILITARY OPERATIONS,” SCIENTIFIC RESEARCH AND EDUCATION IN THE AIR FORCE, vol. 18, pp. 199-206, Jun. 2016, https://doi.org/10.19062/2247-3173.2016.18.1.26.
  • [5] C. Kozera, “Military Use of Unmanned Aerial Vehicles - A Historical Study,” Safety & Defense, vol. 4, pp. 17-21, Apr. 2018, https://doi.org/10.37105/sd.4.
  • [6] M. Ma’sum et al., Simulation of intelligent Unmanned Aerial Vehicle (UAV) For military surveillance. 2013. https://doi.org/10.1109/ICACSIS.2013.6761569.
  • [7] Afonin I. E., Makarenko S. I., Petrov S. V., and Privalov A. A., “Analysis of combat experience as groups of unmanned aerial vehicles are used to defeat anti-aircraft missile means of the air defense system in Syria, Libya and Nagorno-Karabakh wars.,” Systems of Control, Communication and Security, vol. 4, pp. 163-191, 2020.
  • [8] S. Pohasii, R. Korolov, B. Vorobiov, M. Bril, O. Serhiienko, and S. Milevskyi, “UAVs Intercepting Possibility Substantiation: Economic and Technical Aspects,” in 2022 IEEE 4th International Conference on Modern Electrical and Energy System (MEES), Kremenchuk, Ukraine, 2022, pp. 1-6.
  • [9] M. Kratky, V. Minarik, M. Šustr, and J. Ivan, “Electronic Warfare Methods Combatting UAVs,” Advances in Science, Technology and Engineering Systems Journal, vol. 5, pp. 447-454, Nov. 2020, https://doi.org/10.25046/aj050653.
  • [10] B. Ermukhambetova et al., “New approaches to the development of information security systems for unmanned vehicles,” Indonesian Journal of Electrical Engineering and Computer Science, vol. 31, p. 810, Aug. 2023, https://doi.org/10.11591/ijeecs.v31.i2.pp810-819.
  • [11] I. Theodorou, C. V. Ilioudis, C. Clemente, and M. Vasile, “SISAR imaging-radio holography signal reconstruction based on receiver-transmitter motion,” in 2019 IEEE Radar Conference, RadarConf 2019, 2019. https://doi.org/10.1109/RADAR.2019.8835596.
  • [12] V. Kalinin, V. Chapursky, and V. Cherepenin, “Super-Resolution of Radar and Radio Holography Systems Based on a MIMO Retrodirective Antenna Array,” Journal of Communications Technology and Electronics, vol. 66, pp. 727-736, Jun. 2021, https://doi.org/10.1134/S1064226921060139.
  • [13] X. Zhang, H. Kang, Y. Zuo, Z. Lou, Y. Wang, and Y. Qian, “Near-Field Radio Holography of Slant-Axis Terahertz Antennas,” IEEE Trans Terahertz Sci Technol, vol. 10, Dec. 2019, https://doi.org/10.1109/TTHZ.2019.2958066.
  • [14] K. P. Gaikovich, P. Gaikovich, Y. Maksimovitch, and V. Badeev, “Subsurface Near-Field Microwave Holography,” IEEE J Sel Top Appl Earth Obs Remote Sens, vol. 9, pp. 1-9, Jun. 2015, https://doi.org/10.1109/JSTARS.2015.2443035.
  • [15] M. Cummings, S. Bruni, S. Mercier, and P. Mitchell, “Automation Architecture for Single Operator Multiple UAV Command and Control,” The International C2 Journal, vol. 1, Jan. 2008.
  • [16] C. Lum, J. Vagners, M. Vavrina, and J. Vian, Formation Flight of Swarms of Autonomous Vehicles In Obstructed Environments Using Vector Field Navigation. 2012.
  • [17] I. E. Suleimenov, O. A. Gabrielyan, S. A. Malenko, Y. S. Vitulyova, and A. G. Nekita, “Algorithmic Basis Of Battle Neural Networks And Crisis Phenomena In Modern Society.,” in Perishable And Eternal: Mythologies and Social Technologies of Digital Civilization, vol 120. European Proceedings of Social and Behavioural Sciences, D. Y. Krapchunov, S. A. Malenko, V. O. Shipulin, E. F. Zhukova, A. G. Nekita, and O. A. Fikhtner, Eds., European Publisher., 2021, pp. 247-255.
  • [18] J. F. Smith III and T. H. Nguyen, “Fuzzy Logic Based UAV Allocation and Coordination,” in Informatics in Control Automation and Robotics: Selected Papers from the International Conference on Informatics in Control Automation and Robotics 2006, J. A. Cetto, J.-L. Ferrier, J. M. Costa dias Pereira, and J. Filipe, Eds., Berlin, Heidelberg: Springer Berlin Heidelberg, 2008, pp. 81-94. https://doi.org/10.1007/978-3-540-79142-3_8.
  • [19] J. West, M. Hromatka, M. Holt, and S. Biaz, “A fuzzy logic approach to collision avoidance in smart UAVs,” Aug. 2012.
  • [20] I. Suleimenov, Y. Vitulyova, S. Kabdushev, and A. Bakirov, “Improving the efficiency of using multivalued logic tools,” Sci Rep, vol. 13, Jan. 2023, https://doi.org/10.1038/s41598-023-28272-1.
  • [21] R. Assaf and A. Schumann, “Explainable Deep Neural Networks for Multivariate Time Series Predictions,” in Proceedings of the Twenty-Eighth International Joint Conference on Artificial Intelligence, IJCAI-19, International Joint Conferences on Artificial Intelligence Organization, Sep. 2019, pp. 6488-6490. https://doi.org/10.24963/ijcai.2019/932.
  • [22] P. Angelov and E. Soares, Towards Explainable Deep Neural Networks (xDNN). 2019.
  • [23] D. Gunning, M. Stefik, J. Choi, T. Miller, S. Stumpf, and G.-Z. Yang, “XAI-Explainable artificial intelligence,” Sci Robot, vol. 4, p. eaay7120, Dec. 2019, https://doi.org/10.1126/scirobotics.aay7120.
  • [24] A. Barredo Arrieta et al., “Explainable Artificial Intelligence (XAI): Concepts, Taxonomies, Opportunities and Challenges toward Responsible AI,” Information Fusion, vol. 58, Dec. 2019, https://doi.org/10.1016/j.inffus.2019.12.012.
  • [25] I. E. Suleimenov, A. S. Bakirov, and D. K. Matrassulova, “A technique for analyzing neural networks in terms of ternary logic,” J Theor Appl Inf Technol, vol. 99, no. 11, pp. 2537-2553, 2021.
  • [26] Y. Vitulyova, A. Bakirov, D. Shaltykova, and I. Suleimenov, “Prerequisites for the analysis of the neural networks functioning in terms of projective geometry,” IOP Conf Ser Mater Sci Eng, vol. 946, p. 012001, Oct. 2020, https://doi.org/10.1088/1757-899X/946/1/012001.
  • [27] K. N., P. T., B. Saltanat, G. Mun, S. B., and I. Suleimenov, “Methodological basis for the development strategy of artificial intelligence systems in the republic of Kazakhstan in the message of the president of the Republic of Kazakhstan dated october 5, 2018,” NEWS of National Academy of Sciences of the Republic of Kazakhstan, vol. 6, pp. 47-54, Dec. 2018, https://doi.org/10.32014/2018.2518-170X.34.
  • [28] I. E. Suleimenov, D. K. Matrassulova, I. Moldakhan, Y. S. Vitulyova, S. B. Kabdushev, and A. S. Bakirov, “Distributed memory of neural networks and the problem of the intelligence`s essence,” Bulletin of Electrical Engineering and Informatics, vol. 11, no. 1, 2022, https://doi.org/10.11591/eei.v11i1.3463.
  • [29] J. W. Goodman and P. Sutton, “Introduction to Fourier Optics,” Quantum and Semiclassical Optics: Journal of the European Optical Society Part B, vol. 8, no. 5, 1996, https://doi.org/10.1088/1355-5111/8/5/014.
  • [30] L. Kamburov, H. Hristov, and R. Feick, “Optimum Design of Millimeter-Wave Double-Dielectric Fresnel Zone-Plate Lens and Antenna,” Int J Infrared Millimeter Waves, vol. 25, pp. 301-316, Feb. 2004, https://doi.org/10.1023/B:IJIM.0000017901.81288.e0.
  • [31] Vitulyova Y., Matrassulova D., Suleimenov I., and Bakirov A., “Discrete form of the Huygens-Fresnel principle: to the multi-dimensional analog of the Nyquist-Shannon sampling theorem,” International Journal of Information Technology, accepted 13.08.23.
  • [32] K. Chelliah, G. Raman, and R. Muehleisen, “An experimental comparison of various methods of nearfield acoustic holography,” J Sound Vib, vol. 403, pp. 21-37, May 2017, https://doi.org/10.1016/j.jsv.2017.05.015.
  • [33] M. Olivieri, M. Pezzoli, R. Malvermi, F. Antonacci, and A. Sarti, Near-field Acoustic Holography analysis with Convolutional Neural Networks. 2020.
  • [34] P. P. Vaidyanathan, “Generalizations of the sampling theorem: Seven decades after Nyquist,” Circuits and Systems I: Fundamental Theory and Applications, IEEE Transactions on, vol. 48, pp. 1094-1109, Oct. 2001, https://doi.org/10.1109/81.948437.
  • [35] C. Farrow, M. Shaw, H. Kim, P. Juhás, and S. Billinge, “The Nyquist-Shannon sampling theorem and the atomic pair distribution function,” Phys. Rev. B, vol. 84, Oct. 2011, https://doi.org/10.1103/PhysRevB.84.134105.
  • [36] I. Moldakhan, M. Dinara, D. Shaltykova, and I. Suleimenov, “Some advantages of non-binary Galois fields for digital signal processing,” Indonesian Journal of Electrical Engineering and Computer Science, vol. 23, pp. 871-878, Aug. 2021, https://doi.org/10.11591/ijeecs.v23.i2.pp871-878.
  • [37] E. S. Vitulyova, D. K. Matrassulova, and I. E. Suleimenov, “New application of non-binary Galois fields Fourier transform: Digital analog of convolution theorem,” Indonesian Journal of Electrical Engineering and Computer Science, vol. 23, no. 3, 2021, https://doi.org/10.11591/ijeecs.v23.i3.pp1718-1726.
Uwagi
Opracowanie rekordu ze środków MNiSW, umowa nr POPUL/SP/0154/2024/02 w ramach programu "Społeczna odpowiedzialność nauki II" - moduł: Popularyzacja nauki (2025).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-660f91ce-1ff5-4768-812d-3d7d1153b01e
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.