PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Risk-Based Classification of Industrial Waste Storage Facilities

Autorzy
Treść / Zawartość
Identyfikatory
Warianty tytułu
PL
Klasyfikacja obiektów składowania odpadów bazująca na analizie ryzyka
Języki publikacji
EN
Abstrakty
EN
This paper presents the risk-based classification systems for industrial waste storage facilities that are the most commonly applied worldwide. In line with this dual perception of waste storage facilities, either as reservoirs that impound solid-liquid or just liquid material, the application of the systems considered here, depends on the actual purpose of these structures. Therefore, it is necessary to bear in mind the multiple differences between these two types of facilities and the results obtained should be taken with certain reserve. The aforementioned systems have been applied in the case of several waste storage facilities in Serbia and the results obtained were analysed for comparison. Even though the classification systems are generally based on subjective assessments and views, it may be noted that they can provide a solid foundation in the risk assessment process as a form of preliminary risk assessment. Certainly, we should not ignore the fact that in a realistic risk assessment it is still necessary to pay more attention to all the risk aspects associated with the management of waste facilities, while the actual risk evaluation must rely on scientifically based analyses.
PL
W artykule przedstawiono oparte na analizie ryzyka systemy klasyfikacji obiektów do składowania odpadów przemysłowych, które są najczęściej stosowane na całym świecie. Urządzenia do składowania odpadów mogą pełnić różnorodne funkcje - zbiorników, w których składuje się substancje w stanie stałym lub ciekłym lub zbiorników do składowania cieczy, zastosowanie rozważanych tu systemów analizy ryzyka zależy od rzeczywistego celu tych obiektów. Dlatego należy pamiętać o różnicach między tymi dwoma typami obiektów, a uzyskane wyniki należy przyjmować z pewną rezerwą. Powyższe systemy analizy zostały zastosowane w analizie przypadku kilku składowisk odpadów w Serbii, a uzyskane wyniki zostały przeanalizowane w celu porównania. Mimo że systemy klasyfikacji są zasadniczo oparte na subiektywnych ocenach i poglądach, można zauważyć, że mogą one stanowić solidny fundament w procesie oceny ryzyka jako forma wstępnej oceny ryzyka. Oczywiście nie powinniśmy lekceważyć faktu, że w realistycznej ocenie ryzyka wciąż należy zwracać większą uwagę na wszystkie aspekty ryzyka związane z zarządzaniem obiektami unieszkodliwiania odpadów, podczas gdy faktyczna ocena ryzyka musi opierać się na analizach opartych na badaniach naukowych.
Rocznik
Strony
231--240
Opis fizyczny
Bibliogr. 36 poz., tab., wykr., zdj.
Twórcy
autor
  • University of Belgrade, Faculty of Mining and Geology, Belgrade, Serbia
autor
  • University of Belgrade, Faculty of Mining and Geology, Belgrade, Serbia
Bibliografia
  • 1. Morgenstern, Norbert R., Geotechnics and Mine Waste Management – Update, Swedish Mining Association, Natur Vards Verket, European Commission, 2014.
  • 2. Tian, J. G. Xue, Tailings pond safety tec¬hno¬logy and management, Coal Industry Press, Beijing, 2006.
  • 3. Chambers, D. M., & Higman, B. Long term risks of tailings dam failure. Center for Science in Public Participation, Bozeman, Montana, 2011.
  • 4. Robertson M. A, FMEA Risk Analysis: Failure Modes and Effects Analysis [Internet], http://www.infomine.com/library/publications/docs/Robertson2012b.pdf, 2012.
  • 5. McLeod H., Murray L., Tailings dam versus a water dam, what is the design difference? ICOLD Symposium on Major Challenges in Tailings Dams, 2003.
  • 6. Lemphers N., Could the Hungarian tailings dam tragedy happen in Alberta? http://www.pembina.org/blog/417, 2010.
  • 7. Rico, M., Benito, G., Salgueiro, A. R., Díez-Herrero, A., & Pereira, H. G., Reported tailings dam failures: a review of the European incidents in the worldwide context. Journal of Hazardous Materials, 152(2), pp. 846–852., 2008a.
  • 8. Jovanović, M., Problems of Numerical Simulation of Flood Waves Caused by Tailings Dam Failure, South Congress, Society on Large Dams, Budva, 1997.
  • 9. Blight, Geoffrey. Geotechnical engineering for mine waste storage facilities. Leiden, the Netherlands: CRC Press, 2010.
  • 10. Dalpatram, A. “Estimation of dam break discharges,” USSD Workshop, Denver, CO, http://www.infomine.com/publications/docs/Dalpatram2011.pdf., 2011.
  • 11. Rico M., Diez-Herrero A., Benito G., Floods from tailings dam failures, J. Hazard. Mater., 154 (3), pp. 79–87, 2008b.
  • 12. Jeyapalan J.K., Duncan J.M., Seed H.B., Summary of research on analyses of flow failures of mine tailings impoudments. Information Circular 8857, Technology Transfer Workshop on Mine Waste Disposal Techniques, U.S. Bureau of Mines, Denver, Colorado, pp. 54–61., 1981.
  • 13. Lucia P.C, Review of Experiences with Flow Failures of Tailings Dams and waste Impoundments, PhD dissertation, University of California, Berkeley, 1981.
  • 14. USCOLD, Tailings Dam Incidents, U.S. Committee on Large Dams – USCOLD, 1994.
  • 15. Azam S., & Li Q., Tailings dam failures: A review of the last one hundred years, Geotechnical News, 28 (4), pp. 50–54, 2010.
  • 16. Garga, V.K. and Khan, M.A., Review and Comparison of a deterministic Model for estimating Flow Out Distance of Breached Tailings, report submitted to Resources Canada, Mining Research Laboratory, 1995.
  • 17. Kunkel, J., “Modeled Combined Tailing/Water Outflows Compared to Experience Data,” USSD Workshop, Denver, CO. http://www.infomine.com/publications/docs/Kunkel2011b.pdf., 2011a.
  • 18. Kunkel, J., “Downstream Modeling of Tailings Flow from Failure of a 380-ft High Tailing Dam,” USSD Workshop, Denver, CO, 2011b.
  • 19. Chanson, Hubert. Environmental hydraulics for open channel flows. Butterworth-Heinemann, 2004.
  • 20. Fourie, A. B., G. E. Blight, and G. Papageorgiou. "Static liquefaction as a possible explanation for the Merriespruit tailings dam failure." Canadian Geotechnical Journal 38.4, pp. 707–719, 2001.
  • 21. European Commission, Classification of mining waste facilities, Final Report, DHI Water Environment Health in cooperation with Swedish Geotechnical Institute and University of Science and Technology, Krakow, http://ec.europa.eu/environment/waste/mining/pdf/mwfs_report_dec_07.pdf, 2007.
  • 22. Lekovski, Ružica, Mile Bugarin, and Miomir Mikić. "Causes of accidents on the flotation tailing dumps in Serbia." Rudarski radovi, No.3, pp. 99–114. Bor, 2013. (in Serbian)
  • 23. Knezevic D., Torbica S., Rajkovic Z., Nedic M., Industrial waste disposal, textbook, Faculty of mining and geology, Belgrade (in Serbian), 2014.
  • 24. Group of authors, Analysis of Hydraulic Effects in the Event of Dam Failure in the Ash Landfill of the CFPP Kostolac, The Faculty of Civil Engineering of the University in Belgrade, Belgrade, 2003.
  • 25. Stevanović S., Kapor, R., Analysis of consequences and the causes of the breach of tailings dam Saski potok, I Symposium Yugoslav Committee on Large Dams, Budva, pp. 355–359, (in Serbian), 1997.
  • 26. Grujić M., Ristović I., Jacović J., Pollution Drina River as a result of the disposal of the flotation tailing from Veliki Majdan mine, Proceedings of conference Electra II-ISO 1400, Tara, pp. 274–277 (in Serbian), 2002.
  • 27. Directive 2006/21/EC of the European Parliament and of the Council of 15 March 2006 on the management of waste from extractive industries.
  • 28. Recommended Guidelines for Safety Inspection of Dams, Department of the Army, ER 1110- 2-106, Washington, 1979.
  • 29. The National Dam Safety Program, Research Needs Workshop: Embankment Dam Failure Analysis, Federal Emergency Management Agency (FEMA), Washington, 2004.
  • 30. Small Dams, Design, Surveillance and Rehabilitation, ICOLD, 2011.
  • 31. French Committe on Dams and Reservoirs, Guidelines for Design, Construction, and Monitoring. Coordinator Gerard Degoutte, 1997.
  • 32. ICOLD Bulletin 72, Selecting Seismic Parameters for Large Dams, ICOLD, 1989.
  • 33. D. Nišić, D. Knežević, U. Pantelić, A. Tomašević, Classification of the Ash Landfill in the Coal-Fired Power Plant Nikola Tesla B According to the Level of Risk, Technika - Mining, Geology and Metallurgy, Vol. 66, No. 5, pp. 945–951, Belgrade, 2015.
  • 34. D. Nišić, D. Knežević, A. Cvjetić, U. Pantelić, Comparative risk assessment of the old and new phosphogypsum storages in Prahovo, „Hazardous industrial waste, mining waste and treatment of industrial waste water“, II Symp. with internat. participation, рр. 55–66, Zrenjanin, 2016.
  • 35. D. Nišić, D. Knežević, N. Sijerković, U. Pantelić, M. Banković "Comparative Risk Assessment of CCW Disposal in the Old and New Landfill of the Coal-Fired Power Plant Kostolac Based on the Hydrological Scenario, Tehnika - Mining, Geology and Metallurgy, Vol. 67 (5), pp. 677–684, Belgrade, 2015.
  • 36. European Commission. Report from the Commission to the European Parliament, the Council, the European Economic and Social Committee and the Committee of the Regions on the Implementation of Directive 2006/21/EC on the management of waste from extractive industries and amending Directive 2004/35/EC, COM (2016) 553 final, Brussels.
Uwagi
Opracowanie rekordu w ramach umowy 509/P-DUN/2018 ze środków MNiSW przeznaczonych na działalność upowszechniającą naukę (2018).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-65860481-5394-4ce9-8039-11471be83017
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.