PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Reduction of dynamic loads in the drive system of mining scraper conveyors through the use of an innovative highly flexible metal coupling

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
The article provides a discussion on the results of the authors’ original studies of a power transmission system of a mining scraper conveyor coupled with an innovative highly flexible clutch, conducted in operating conditions. The research consisted in establishing the static characteristics of the highly flexible clutch in question, determining the torsional vibrations of the said highly flexible clutch and the vibrations of the transmission housings at a test rig, verifying if the coupling between the innovative flexible clutch and a typical scraper conveyor drive unit was correct, and testing durability of individual components of the highly flexible clutch. Following the aforementioned tests and based on the static characteristics of the highly flexibleclutch examined, one can distinguish three phases of its operation: initial, main, and final –all differing in terms of flexibility. Furthermore, upon increasing the flexibility of the metal clutch, a significant decline in the root mean square (RMS) values of linear vibration accelerations was observed compared to the blocked condition of the clutch. It was further noticed that, as the torsional vibrations of the clutch shaft were increasing, the linear vibrations measured at the transmission bearing housings were decreasing significantly. Based on the tests conducted in operating conditions, it was found that the durability of the flexibilising system (bolt and nut) was sufficient and that there were no thermal effects associated with the motion of the system components.
Rocznik
Strony
art. no. 181171
Opis fizyczny
Bibliogr. 72 poz., fot., rys., wykr.
Bibliografia
  • 1. Angeles E, Kumral M. Optimal Inspection and Preventive Maintenance Scheduling of Mining Equipment. Journal of Failure Analysis and Prevention 2020; 20: 1408–1416, https://doi.org/10.1007/s11668-020-00949-z.
  • 2. Andrych-Zalewska M, Chlopek Z, Pielecha J, Merkisz J. Investigation of exhaust emissions from the gasoline engine of a light duty vehicle in the Real Driving Emissions test. Eksploatacja i Niezawodność – Maintenance and Reliability. 2023;25(2). https://doi.org/10.17531/ein/165880.
  • 3. Borucka A. Three-state Markov model of using transport means, Business Logistics in Modern Management, 2018;18:3-19
  • 4. Butsch M. Hydraulische Verluste schnelllaufender Stirnradgetriebe, Dissertationen Universität Stuttgart 1989.
  • 5. Can E, Bozca M. Optimising the Geometric Parameters of a Gear in a Tractor Transmission Under Constraints Using Kisssoft. Acta Mechanica et Automatica 2023, 17 (2): 145-159, https://doi.org/10.2478/ama-2023-0016.
  • 6. Carranza Fernandez R, Tobie T, Collazo J. Increase wind gearbox power density by means of IGS (Improved Gear Surface). International Journal of Fatigue 2022; 159,, https://doi.org/10.1016/j.ijfatigue.2022.106789.
  • 7. Cheng W, Wang S, Liu Y, Chen X, Nie Z, Xing J. Zhang R, Huang Q. A Novel Planetary Gearbox Fault Diagnosis Method for NuclearCirculating Water Pump With Class Imbalance and Data Distribution Shift. IEEE Transactions on Instrumentation and Measurement2023; 72: 1–13, https://doi.org/10.1109/tim.2023.3238752.
  • 8. Clarke B P, Nicholas G, Hart E, Long H, Dwyer-Joyce R S. Loading on a wind turbine high-speed shaft gearbox bearing: Ultrasonic field measurements and predictions from a multi-body simulation. Tribology International 2023; 181, https://doi.org/10.1016/j.triboint.2023.108319.
  • 9. Cocconcelli M, Agazzi A, Mucchi E, Dalpiaz G, Rubini R. Dynamic analysis of coupling elements in IC engine test rigs. In Proceedings of the ISMA2014-USD2014 Conference, Leuven, Belgium, 15–17 September 2014: 1005–1018.
  • 10. da Silva Tuckmantel F W, Cavalca K L. Vibration signatures of a rotor-coupling-bearing system under angular misalign-ment. Mechanism and Machin Theory 2019; 133: 559–583, https://doi.org/10.1016/j.mechmachtheory.2018.12.014.
  • 11. Dao P B. On Cointegration Analysis for Condition Monitoring and Fault Detection of Wind Turbines Using SCADA Data. Energies 2023; 16 (5), https://doi.org/10.3390/en16052352.
  • 12. Dhote N D, Khond M P. Condition Monitoring Approach for Wear Recognition in Gear Pump. Journal of Failure Analysis and Prevention 2022; 22(4): 1558-1565, https://doi.org/10.1007/s11668-022-01448-z.
  • 13. Dick A: Untersuchungen zu den Leerlaufverlusten eines einspritzgeschmierten Stirnradgetriebes, Dissertationen Universität Stuttgart 1989.
  • 14. Döbereiner R.: Tragfähigkeit von Hochverzahnungen geringer Schwingungsanregung. Praca doktorska TU München 1998.
  • 15. Dolipski M, Sobota P. Porównanie rozruchu przenośnika zgrzebłowego ze sprzęgłami hydrokinetycznymi i podatnymi. Przegląd Górniczy 1992: 1–254.
  • 16. Dolipski M. Ugleichmaessige Belastung von Antriebssystemen in kettengetriebenen Betriebsmitteln mit Kopf-und Heckantrieb. Trier, In Proceedings of the 5. Ingenieurtag am Fachbereich Maschinenban der FH Trier.
  • 17. Drwięga A, Skoć A. Badanie Charakterystyk Dynamicznych Sprzęgła Wielopłytkowego Zintegrowanego z Przekładnią Zębatą Obiegową Napędu Przenośników Górniczych. Gliwice, Wydawnictwo Komag: 2006.
  • 18. Durczak K, Selech J, Ekielski A, Żelaziński T, Waleński M, Witaszek K. Using the Kaplan–Meier Estimator to Assess the Reliability of Agricultural Machinery. Agronomy, 2022, 12, 1364, https://doi.org/10.3390/agronomy12061364.
  • 19. Feng K, Ji J C, Ni Q, Yun H, Zheng J, Liu Z. A novel vibration indicator to monitor gear natural fatigue pitting propagation.Structural Health Monitoring 2023; 0(0), https://doi.org/10.1177/14759217221142622.
  • 20. Feng K, Ni Q, Beer M, Du H, Li C. A novel similarity-based status characterization methodology for gear surface wear propagation monitoring. Tribology International 2022; 174, https://doi.org/10.1016/j.triboint.2022.107765.
  • 21. Filipowicz K. Dwukierunkowe Metalowe Sprzęgła Podatne Skrętnie. Gliwice, Wydawnictwo Politechniki Śląskiej: 2011.
  • 22. Fill-controlled Fluid Couplings, broszura firmy Voith TurboGmbH & Co. KG, Crailsheim 2007.
  • 23. Gao Y, Liu X, Xiang J. Fault Detection in Gears Using Fault Samples Enlarged by a Combination of Numerical Simulation and a Generative Adversarial Network. IEEE/ASME Transactions on Mechatronics 2022; 27 (5): 3798-3805.https://doi.org/10.1109/TMECH.2021.3132459
  • 24. Gauder D, Gölz J, Jung N, Lanza G. Development of an adaptive quality control loop in micro-production using machine learning, analytical gear simulation, and inline focus variation metrology for zero defect manufacturing. Computers in Industry 2023; 144, https://doi.org/10.1016/j.compind.2023.103854.
  • 25. Gerber H. Innere dynamische Zusatzkräkte bei Stirnradgetrieben –Modelbildung, innere Anregung und Dämpfung. Praca doktorska TU München 1984.
  • 26. Grega R, Krajnak J, Žuľová L, Kačír M, Kaššay P, Urbanský M. Innovative Solution of Torsional Vibration Reduction by Application of Pneumatic Tuner in Shipping Piston Devices. Journal of Marine Science and Engineering 2023; 11(2), 261, https://doi.org/10.3390/jmse11020261.
  • 27. Hawk J A, Wilson R D. Tribology of Earthmoving, Mining, and Minerals Processing. In Modern Tribology Handbook, CRC Press LLC:2001.https://doi.org/10.1201/9780849377877.ch35
  • 28. Höhn B R, Oster P, Döbereiner R. Load Capacity of High Ratio Gears Comparision of Theoretical Calculation and Experimatal Test Results. VDI –Berichte 2002; 1665.
  • 29. Homišin J, Kaššay P, Urbanský M, Puškár M, Grega R, Krajňák J. Electronic Constant Twist Angle Control System Suitable for Torsional Vibration Tuning of Propulsion Systems. Journal of Marine Science and Engineering 2020; 8 (721), https://doi.org/10.3390/jmse8090721.
  • 30. Inturi V, Balaji S V, Gyanam P, Pragada B P V, Geetha Rajasekharan S, Pakrashi V. An integrated condition monitoring scheme for health state identification of a multi-stage gearbox through Hurst exponent estimates. Structural Health Monitoring 2023; 22(1):730-745, https://doi.org/10.1177/14759217221092828.
  • 31. Juzek, M. Analysis of the impact of non-parallelism of shafts' axes on the contact area of cooperating teeth and gearbox's components vibrations. Scientific Journal of Silesian University of Technology. Series Transport 2019; 104: 37-45. https://doi.org/10.20858/sjsutst.2019.104.4.
  • 32. Kowal A. Sprzęgło Mechaniczne. Patent No. PL 190945 B1, 28 February 2006; r. WUP 02/06.
  • 33. Kowal A. Sprzęgło Mechaniczne. Patent No. PL 191092 B1, 31 March 2006; r. WUP 03/06.
  • 34. Kowal A, Filipowicz K. The construction of metal flexible torsional coupling. Transport Problems 2007; 2: 73–80.
  • 35. Kozłowski, E., Borucka, A., Liu, Y., Mazurkiewicz, D. Conveyor Belts Joints Remaining Life Time Forecasting with the Use of Monitoring Data and Mathematical Modelling. Innovations in Mechatronics Engineering 2021:https://doi.org/10.1007/978-3-030-79168-1_5
  • 36. Kozłowski E, Borucka A, Oleszczuk P, Jałowiec T. Evaluation of the maintenance system readiness using the semi-Markov model taking into account hidden factors. Eksploatacja i Niezawodność – Maintenance and Reliability. 2023;25(4). https://doi.org/10.17531/ein/172857
  • 37. Li X, Zhang W, Yang J, Wang B. Compensation of axial geometric errors in cycloidal gear form grinding. Journal of Manufacturing Processes 2022; 71: 110-126.https://doi.org/10.1155/2022/4804498
  • 38. Li Y, Du X, Wang X, Si S. Industrial gearbox fault diagnosis based on multi-scale convolutional neural networks and thermal imaging. ISA Transactions 2022; 129: 309-320, https://doi.org/10.1016/j.isatra.2022.02.048.
  • 39. Lin H, Oswald F B, Townsend D P. Computer-Aided of High-Contact-Ratio Gears for Minimum Dynamic Load and Stress. Journal of Mechanical Design 1993; 115 (1), https://doi.org/10.1115/1.2919315.
  • 40. Łazarz B, PerunG. Determining the technical state of a combustion engine with the use of vibroacoustic signals. Zeszyty Naukowe 2016; 4:117-124.
  • 41. Michalczewski R, Kalbarczyk M, Slomka Z, Sowa S, Łuszcz M, Osuch-Słomka E, Maldonado-Cortés D, Liu L, Antonov M, Hussainova I. The wear of PVD coated elements in oscillation motionat high temperature. Proceedings of the Estonian Academy of Sciences 2021, 70: 500–507.
  • 42. Michnej M, Młynarski S, Pilch R, Sikora W, Smolnik M, Drożyner P. Physical and reliability aspects of high-pressure ammonia water pipeline failures. Eksploatacja i Niezawodnosc –Maintenance and Reliability 2022, 24, 4, http://doi.org/10.17531/ein.2022.4.13.
  • 43. Kuczaj M, Wieczorek A N, Konieczny Ł, Burdzik R, Wojnar G, Filipowicz K, Głuszek G. Research on Vibroactivity of Toothed Gears with Highly Flexible Metal Clutch under Variable Load Conditions. Sensors 2023; 23(1), 287, https://doi.org/10.3390/s23010287.
  • 44. Markusik S. Sprzęgła mechaniczne. Warszawa, Wydawnictwa Naukowo-Techniczne: 1979.
  • 45. Maurer J. Lastunabhängige Verzahnungsverluste schnellaufender Stirnradgetriebe, Dissertationen Universität Stuttgart 1994.
  • 46. Mauz W. Hydraulische Verluste von Stirnradgetrieben bei Umfangsgeschwindigkeiten bis 60 m/s, Dissertationen Universität Stuttgart 1987.
  • 47. Möllers W. Parametererregte Schwingungen in einstufigen Zylinderradgetrieben. Einfluss von Verzahnungsabweichungen und Verzahnungssteifigkeitsspektren. Praca doktorska. RWTH Aachen 1982.
  • 48. Salje H. Konstruktive Geräuschminderungsmassnahmen durch gezielte Profilkorrektu-ren und Hochverzahnungen. Forschungsvorhaben Nr. 98/I, Frankfurt 1985.
  • 49. Salje H. Tragfähigkeits-und Geräuschuntersuchungen an Hochverzahnungen -Ab-schlussbericht. Forschungsvorhaben Nr. 98/II, Frankfurt 1987.
  • 50. Shao W, Yi M, Tang J, Sun S. Prediction and Minimization of the Heat Treatment Induced Distortion in 8620H Steel Gear: Simulation and Experimental Verification. Chinese Journal of Mechanical Engineering (English Edition) 2022; 35(1), https://doi.org/10.1186/s10033-022-00802-4.
  • 51. Shi Z, Zhu Z. Case study: Wear analysis of the middle plate of a heavy-load scraper conveyor chute under a range of operating conditions. Wear 2017; 380–381: 36–41, https://doi.org/10.1016/j.wear.2017.03.005.
  • 52. Shi C Z, Parker R G. Modal structure of centrifugal pendulum vibration absorber systems with multiple cyclically symmetric groups of absorbers. Journal of Sound and Vibration 2013; 332 (18): 4339–4353, https://doi.org/10.1016/j.jsv.2013.03.009.
  • 53. Skołek E, Wasiak K, Światnicki W A. Structure and properties of the carburised surface layer on 35CrSiMn5-5-4 steel after nanostructurization treatment. Materials and Technology 2015; 49, https://doi.org/10.17222/mit.2014.255.
  • 54. Sobota P. Identyfikacja i określenie możliwości redukcji przeciążeń zespołów napędowych w przenośnikach ścianowych. BW-592/RG-2/98/T-9, Gliwice 1998 (unpublished work).
  • 55. Strasser D. Einfluss des Zahnflanken-und Zahnkopfspieles auf die Leerlaufverlustleistung von Zahnradgetrieben, Dissertationen Ruhr-Universität Bochum 2005.
  • 56. Suchoń J. Górnicze przenośniki zgrzebłowe. Gliwice, Budowa i zastosowanie. Instytut Techniki Górniczej KOMAG: 2012.
  • 57. Suchoń J. Górnicze przenośniki zgrzebłowe. Gliwice, Teoria, badania i eksploatacja. Instytut Techniki Górniczej KOMAG: 2012.
  • 58. Timokhina I B, Beladi H, Xiong X Y, Adachi Y, Hodgson P D. Nanoscale microstructural characterization of a nanobainitic steel. Acta Materialia 2011; 59: 5511–5522. https://doi.org/10.1016/j.actamat.2011.05.024.
  • 59. Tobie T, Hippenstiel F, Mohrbacher H. Optimizing gear performance by alloy modification of carburizing steels. Metals 2017; 7, https://doi.org/10.3390/met7100415.
  • 60. Tylczak J H. Abrasive wear. In ASM Handbook—Friction, Lubrication, and Wear Technology 1992: 184–190.
  • 61. Ulbrich D, Selech J, Kowalczyk J, Jóźwiak J, Durczak K, Gil L, Pieniak D, Paczkowska M, Przystupa K. Reliability Analysis forUnrepairable Automotive Components. Materials 2021, 14, 7014, https://doi.org/10.3390/ma14227014.
  • 62. Walter P. Untersuchungen zur Tauchschmierung von Stirnrädern bei Umfangsgeschwindigkeiten bis 60 m/s, Dissertationen Universität Stuttgart 1982.
  • 63. Wang, H, Li Z. Safety management of coal mining process. In IOP Conference Series: Earth and Environmental Science, IOP Publishing 2020; 598, https//doi:10.1088/1755-1315/598/1/012005.
  • 64. Weck M. Moderne Leistunggetriebe. Springer-Verlag, Berlin, Heidelberg, New York, London, Paris, Tokyo 1995.
  • 65. Wieczorek A N, Konieczny Ł, Burdzik R, Wojnar G, Filipowicz K, Kuczaj M. A Complex Vibration Analysis of a Drive System Equipped with an Innovative Prototype of a Flexible Torsion Clutch as an Element of Pre-Implementation Testing. Sensors 2022; 22(6), 2183, https://doi.org/10.3390/s22062183.
  • 66. Wieczorek A N. Analysis of the possibility of integrating a mining right-angle planetary gearbox with technical diagnostics systems. Scientific Journal of Silesian University of Technology. Series Transport 2016; 93: 149-163, https://doi.org/10.20858/sjsutst.2016.93.16.
  • 67. Wieczorek N, Polis W. Operation-oriented method for testing the abrasive wear of mining chain wheels in the conditions of the combined action of destructive factors. Management Systems in Production Engineering, 2015, 3, 19, https://doi.org/10.12914/MSPE-12-03-2015.
  • 68. Wojnar G, Burdzik R, Wieczorek A N, Konieczny Ł. Multidimensional Data Interpretation of Vibration Signals Registered in Different Locations for System Condition Monitoring of a Three-Stage Gear Transmission Operating under Difficult Conditions. Sensors 2021; 21(23), 7808,https://doi.org/10.3390/s21237808.
  • 69. Wu D, Yan P, Guo Y, Zhou H, Chen J. A gear machining error prediction method based on adaptive Gaussian mixture regression considering stochastic disturbance. Journal of Intelligent Manufacturing 2022; 33 (8): 2321-2339, https://doi.org/10.1007/s10845-021-01791-2.
  • 70. Xia R, Li B, Wang X, Yang Z, Liu L. Screening the Main Factors Affecting the Wear of the Scraper Conveyor Chute Using the Plackett–Burman Method. Hindawi Mathematical Problems in Engineering 2019, 2019: 1–11, https://doi.org/10.1155/2019/1204091.
  • 71. Yi, Y.; Qin, D.; Liu, C. Investigation of electromechanical coupling vibration characteristics of an electric drive multistage gear system. Mechanism and Machine Theory 2018; 121: 446–459, https://doi.org/10.1016/j.mechmachtheory.2017.11.011.
  • 72. Zum Gahr K H. Microstructure and Wear of Materials. Tribology series. Amsterdam, Elsevier: 1987.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-63e3e0bc-6f5e-49e6-9644-2e4a152000ba
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.