PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Gamma radiation shielding properties of (x)Bi2O3–(0.5 - x)ZnO–0.2B2O3–0.3SiO2 glass system

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
Lead (Pb)-based materials are very effective in radiation shielding due to their high density of Pb. However, they pose health risks to humans because of the toxicity of lead. As a result, the investigation of radiation shielding properties of various lead-free glass materials has drawn a lot of attention from researchers. In this work, the γ radiation competence of the Bi2O3–ZnO–B2O3–SiO2 glass network was investigated, for the first time in the 0.015–15 MeV energy range, using Phy-X/PSD and XCOM software systems. The results showed that 45Bi2O3–5ZnO–20B2O3–30SiO2 glass sample has the highest linear attenuation coefficient, mass attenuation coefficient, and effective atomic number, and it has the lowest half-value layer, tenth-value layer, and mean-free path. Therefore, 45Bi2O3–5ZnO–20B2O3–30SiO sample is more effective on γ ray shielding than 10Bi2O3–40ZnO–20B2O3–30SiO, 20Bi2O3–30ZnO–20B2O3–30SiO, 30Bi2O3–20ZnO–20B2O3–30SiO, and 40Bi2O3–10ZnO–20B2O3–30SiO samples. The comparison of the results with the literature also revealed that the 45Bi2O3–5ZnO–20B2O3–30SiO glass sample is even more effective than some of Bi2O3-based glass systems, which were recently developed in the literature, by at least a factor of 2.
Czasopismo
Rocznik
Strony
23--29
Opis fizyczny
Bibliogr. 27 poz., rys.
Twórcy
  • Department of Physics University of Johannesburg Johannesburg, 2028, South Africa
Bibliografia
  • 1. Kirdsiri, K., Kaewkhao, J., Chanthima, N., & Limsuwan, P. (2011). Comparative study of silicate glasses containing Bi2O3, PbO and BaO: Radiation shielding and optical properties. Ann. Nucl. Energy, 38(6), 1438–1441. https://doi.org/10.1016/j.anucene. 2011.01.031.
  • 2. Kumar, A. (2017). Gamma ray shielding properties of PbO-Li2O-B2O3 glasses. Radiat. Phys. Chem., 136, 50–53. https://doi.org/10.1016/j.radphyschem.2017.03.02.
  • 3. Kaur, S., & Singh, K. (2014). Investigation of lead borate glasses doped with aluminium oxide as gamma ray shielding materials. Ann. Nucl. Energy, 63, 350–354. https://doi.org/10.1016/j.anucene. 2013.08.012.
  • 4. Roy, S. C., & Sandison, G. A. (2000) Shielding for neutron scattered dose to the fetus in patients treated with 18 MV x-ray beams. Med. Phys., 27, 1800. https://doi.org/10.111 8/1.1287438.
  • 5. Sayyed, M., Çelikbilek Ersundu, M., Ersundu, A. E., Lakshminarayana, G., & Kostka, P. (2018). Investigation of radiation shielding properties for MeOPbCl2-TeO2 (MeO = Bi2O3, MoO3, Sb2O3, WO3, ZnO) glasses. Radiat. Phys. Chem., 144, 419–425. http://dx.doi.org/10.1016/j.radphyschem. 2017.10.005.
  • 6. Akkurt, I., Malidarre, R., & Kavas, T. (2021). Monte Carlo simulation of radiation shielding properties of the glass system containing Bi2O3. Eur. Phys. J. Plus, 136, 264. https://doi.org/10.1140/epjp/s13360- 021-01260-y.
  • 7. Kaewkhao, J., Pokaipisit, A., & Limsuwan, P. (2010). Study on borate glass system containing with Bi2O3 and BaO for gamma-rays shielding materials: Comparison with PbO. J. Nucl. Mater., 399(1), 38–40. DOI: 10.1016/j.jnucmat. 2009.12.020.
  • 8. Sayyed, M., Elbashir, B., Tekin, H., Altunsoy, E., & Gaikwad, D. (2018). Radiation shielding properties of pentaternary borate glasses using MCNPX code. J. Phys. Chem. Solids, 121, 17–21. https://doi.org/10.1016/j.jpcs. 2018.05.009.
  • 9. Sopapan, P., Laopaiboon, J., Jaiboon, O., Yenchai, C., & Laopaiboon, R. (2020). Feasibility study of recycled CRT glass on elastic and radiation shielding properties used as x-ray and gamma-ray shielding materials. Prog. Nucl. Energy, 119, 103149. https://doi.org/10.1016/j.pnucene. 2019.103149.
  • 10. Waly, E. S. A., Fusco, M. A., & Bourham, M. A. (2016). Gamma-ray mass attenuation coeffi cient and half value layer factor of some oxide glass shielding materials. Ann. Nucl. Energy, 96, 26–30. https://doi.org/10.1016/j.anucene. 2016.05.028.
  • 11. ALMisned, G., Elshami, W., Issa, S., Susoy, G., Zakaly, H., Algethami, M., Rammah, Y., Ene, A., AlGhamdi, S., Ibraheem, A. A., & Tekin, H. O. (2021). Enhancement of gamma-ray shielding properties in cobalt-doped heavy metal borate glasses: The role of lanthanum oxide reinforcement. Materials, 14, 7703. https://doi.org/10.3390 /ma14247703.
  • 12. Ahmad, N. S., Mustafa, I. S., Mansor, I., Malik, M. F. I. A., Razali, N. A. N., & Nordin, S. (2018). Gamma ray shielding characteristic of BiZnBo-SLS and PbZnBoSLS glass. Mater. Res. Express, 5(5), 055203. https://doi.org/10.1088/2053- 1591/aac1d1.
  • 13. Kurtulus, R., Kavas, T., Akkurt, I., Gunoglu, K., Tekin, H. O., & Kurtulus, C. (2021). A comprehensive study on novel alumino-borosilicate glass reinforced with Bi2O3 for radiation shielding applications: synthesis, spectrometer, XCOM, and MCNP-X works. J. Mater. Sci.-Mater. Electron., 32, 13882–13896. https://doi.org/10.1007/s10854- 021-05964-w.
  • 14. Al-Harbi, F. F., Prabhu, N. S., Sayyed, M. I., Almuqrin, A. H., Kumar, A., & Kamath, S. D. (2021). Evaluation of structural and gamma ray shielding competence of Li2O-K2O-B2O3-HMO (HMO = SrO/TeO2/PbO/Bi2O3) glass system. Opt. (Stuttg), 248, 168074.https://doi.org/10.1016/j.ijleo. 2021.168074.
  • 15. Mustafa, I. S., Razali, N. A. N., Azman, N. Z. N., Yahaya, N. Z., Zaini, M. Z. M., Rusli, N. L., Nizamani, M. B., & Kamari, H. M. (2017). Comprehensive study of electronic polarizability and band gap of B2O3–Bi2O3–ZnO–SiO2 glass network. J. Adv. Dielectr., 7(5), 1750031. https://doi.org/10.1142/S20101 35X1750031X.
  • 16. Mustafa, I. S., Razali, N. A. N., Ibrahim, A. R., Yahaya, N. Z., & Kamari, H. M. (2015). From rice husk to transparent radiation protection material. Jurnal Intelek , 9(2), 1–6.
  • 17. Akkurt, I., Malidarre, R., & Kavas, T. (2021). Monte Carlo simulation of radiation shielding properties of the glass system containing Bi2O3. Eur. Phys. J. Plus, 136, 264. https://doi.org/10.1140/epjp/s13360- 021-01260-y.
  • 18. Sakar, E., Ozpolat, O., Alım, B., Sayyed, M., & Kurudirek, M. (2020). Phy-X/PSD: Development of a user friendly online software for calculation of parameters relevant to radiation shielding and dosimetry. Phys. Chem., 166, 108496. https://doi.org/10.1016/j.radphyschem. 2019.108496.
  • 19. Phy-X/PSD: Photon Shielding and Dosimetry. https://ph y-x.net/PSD.
  • 20. XCOM [database]. National Institute of Standards and Technology. https://physics.nist.gov/PhysRefData/Xcom/html /xcom1.html.
  • 21. Sarihan, M. (2020). Simulation of gamma-ray shielding properties for materials of medical interest. Open Chem., 20, 81–87. https://doi.org/10.1515/che m2021-0118.
  • 22. Kheswa, B. V. (2023). X-ray shielding properties of bismuth-borate glass doped with rare-earth ions. Open Chem., 21, 20220345. https://doi.org/10.1515/chem-2022-0345.
  • 23. Kaur, P., Singh, K. J., Thakur, S., & Kurudirek, M. (2020). Investigation of a competent non-toxic Bi2O3-Li2O-CeO2-MoO3-B2O3 glass system for nuclear radiation security applications. J. Non. Cryst. Solids, 545, 120235. https://doi.org/10.1016/j.jnoncrysol. 2020.120235.
  • 24. Sayyed, M. I., Kurtulus, R., Balderas, C. V., Kavas, T., & Almuqrin, A. H. (2021). Xray shielding behavior of TeO2Li 2OGeO2ZnOBi 2O3 glass system using EPICS2017 library and PhyX software. Appl. Phys. A, 127, 757. https://doi.org/10.1007/s00339- 021-04893-z.
  • 25. Kavaz, E., Agawany, F. E., Tekin, H., Perisanoglu, U., & Rammah, Y. S. (2020). Nuclear radiation shielding using barium borosilicate glass ceramics. J. Phys. Chem. Solids, 142, 109437. https://doi.org/10.1016/j.jpcs. 2020.109437.
  • 26. Mhareb, M. H. A. (2020). Physical, optical and shielding features of Li2O–B2O3–MgO–Er2O3 glasses co-doped of Sm2O3. Appl. Phys. A, 126, 71. https://doi.org/10.1007/s00339 -019-3262-9.
  • 27. Tekin, H. O., ALMisned, G., Zakaly, H. M. H., Zamil,A., Khoucheich, D., Bilal, G., Al-Sammarraie, L., Issa, S. A. M., Al-Buriahi, M. S., & Ene, A. (2022).Gamma, neutron, and heavy charged ion shielding properties of Er3+-doped and Sm3+-doped zinc borate glasses. Open Chem., 20, 130–145. https://doi.org/10.1515/che m-2022-0128.
Uwagi
Opracowanie rekordu ze środków MNiSW, umowa nr SONP/SP/546092/2022 w ramach programu "Społeczna odpowiedzialność nauki" - moduł: Popularyzacja nauki i promocja sportu (2024).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-638c6471-3d17-4bd3-9358-a09cb62d503b
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.