Tytuł artykułu
Autorzy
Identyfikatory
Warianty tytułu
The role of packaging in maintaining food quality
Języki publikacji
Abstrakty
Branża opakowań to jedna z najprężniej rozwijających się gałęzi gospodarek światowych, o wysokim potencjale innowacyjnym. Wzajemne oddziaływanie czynników technologicznych, środowiskowych i wymagań konsumenckich zwiększyło rolę opakowań w utrzymaniu i poprawie bezpieczeństwa i jakości żywności, przedłużaniu okresu jej przydatności do spożycia i promowaniu atrakcyjności rynkowej. Biorąc pod uwagę złożoność funkcji opakowań do żywności, konieczna jest ciągła ocena ich bezpieczeństwa i skuteczności. Niniejszy artykuł zawiera przegląd wybranych rozwiązań funkcjonujących na rynku opakowań, ich zastosowań w celu zapewnienia optymalnej jakości i bezpieczeństwa zdrowotnego żywności.
The packaging industry is one of the most rapidly growing branches of world economies, with a high potential for innovation. The interplay of technological factors, environmental factors and consumer demands has increased the role of packaging in maintaining and improving food safety and quality, extending shelf life and promoting market appeal. Given the complexity of food packaging functions, continuous evaluation of its safety and effectiveness is necessary. This article provides an overview of selected solutions operating in the packaging market, their applications to ensure optimal quality and health safety of food.
Wydawca
Czasopismo
Rocznik
Tom
Strony
40--47
Opis fizyczny
Bibliogr. 97 poz.
Twórcy
autor
- Instytut Biotechnologii Przemysłu Rolno-Spożywczego im. prof. Wacława Dąbrowskiego – Państwowy Instytut Badawczy, Zakład Technologii i Techniki Chłodnictwa, Łódź
Bibliografia
- [1] Ahankari S.S., A.R. Subhedar, S.S. Bhadauria, A. Dufresne. 2021. Nanocellulose in food packaging: A review. Carbohydrate Polymers 255 : 117479.
- [2] Ahmed S., S. Ikram. 2016. Chitosan and gelatin based biodegradable packaging films with UV-light protection. J. Photochem. Photobiol. B 163 : 115-124.
- [3] Amenta V. i in. 2015. Regulatory aspects of nanotechnology in the agri/feed/food sector in EU and non-EU countries. Regul. Toxicol. Pharmacol., 73 (1) : 463-476.
- [4] Athauda T., N.C. Karmakar. 2019. Review of RFID-based sensing in monitoring physical stimuli in smart packaging for food-freshness applications. Wirel. Power Transf. 6 : 161-174.
- [5] Banerjee S., C. Kelly, J.P. Kerry, D.B. Papkovsky. 2016. High throughput nondestructive assessment of quality and safety of packaged food products using phosphorescent oxygen sensors. Trends in Food Science & Technology 50 : 85-102.
- [6] Bang S.W., J. Kim. 2012. Biodegradable poly(lactic acid)-based hybrid coating materials for food packaging films with gas barrier propertiesInd. Eng. Chem. 18 (3) : 1063-1068.
- [7] Barone A.S. i in. 2021. Green-based active packaging: Opportunities beyond COVID-19, food applications, and perspectives in circular economy-A brief review. Compr. Rev. Food Sci. Food Saf. 20, 5 : 4881-4905.
- [8] Bibi F., C. Guillaume, N. Gontard, B. Sorli. 2016. Wheat gluten, a biopolymer layer to monitor relative humidity in food packaging: Electric and dielectric characterization. Sensors and Actuators a-Physical 247: 355-367.
- [9] Bibi F., C. Guillaume, N. Gontard, B. Sorli. 2017. A review: RFID technology having sensing aptitudes for food industry and their contribution to tracking and monitoring of food products. Trends Food Sci. Technol. 62 : 91-103.
- [10] Biji K.B., C.N. Ravishankar, C.O. Mohan, T.K. Srinivasa. 2015. Smart packaging systems for food applications: a review. J. Food Sci. Technol. 52 (10) : 6125-6135.
- [11] Bultzingslowen C. i in. 2002. Sol-gel based optical carbon dioxide sensor employing dual luminophore referencing for application in food packaging technology, Analyst 127 (11) : 1478-1483.
- [12] Bumbudsanpharoke N., S. Ko. 2015. Nano-Food Packaging: An Overview of Market, Migration Research, and Safety Regulations. J. Food Sci., 80 (5) : R910-R923.
- [13] Cherpinski A., S. Torres-Giner, L. Cabedo, J. A. Méndez, J.M. Lagaron. 2018. Multilayer structures based on annealed electrospun biopolymer coatings of interest in water and aroma barrier fiber-based food packaging applications. J. Appl. Polym. Sci. 135 (24) : 45501.
- [14] Choi I., J.Y. Lee, M. Lacroix, J. Han. 2017. Intelligent pH indicator film composed of agar/potato starch and anthocyanin extracts from purple sweet potato. Food Chemistry 218 : 122-128.
- [15] Commission Regulation (EU) No 10/2011 of 14 January 2011 on Plastic Materials and Articles Intended to Come into Contact with Food. Official Journal of the European Union (2011), p. 1.
- [16] Costa C., F. Antonucci, F. Pallottino, J. Aguzzi, D. Sarriá, P. Menesatti. 2012. A Review on Agri-food Supply Chain Traceability by Means of RFID Technology. Food Bioprocess Technol. 6 : 353-366.
- [17] Danilczuk M., A. Lund, J. Sadlo, H. Yamada, J. Michalik. 2006. Conduction electron spin resonance of small silver particlesSpectrochim. Acta A Mol. Biomol. Spectrosc. 63 (1): 189-191.
- [18] Dodero A., A. Escher, S. Bertucci, M. Castellano, P. Lova. 2021. Intelligent Packaging for Real-Time Monitoring of Food-Quality: Current and Future Developments. Appl. Sci. 11: 3532.
- [19] Dong H., Z. Ling, X. Zhang, X. Zhang, S. Ramaswamy, F. Xu. 2020. Smart colorimetric sensing films with high mechanical strength and hydrophobic properties for visual monitoring of shrimp and pork freshness. Sensors and Actuators B: Chemical 309 : 127752.
- [20] E l-Wahab H.M.F.A., G.-S.-E.-D. Moram. 2012. Toxic effects of some synthetic food colorants and/or flavor additives on male rats. Toxicology and Industrial Health, 29: 224-232.
- [21] European bioplastics, Bioplastics market data https://www.europeanbioplastics.org/market/.
- [22] Ezati P., J.-W. Rhim. 2020. pH-responsive pectin-based multifunctional films incorporated with curcumin and sulfur nanoparticles. Carbohydrate Polymers, 230 :115638.
- [23] Firouz M. S., K. Mohi-Alden, M. Omid. 2021. A critical review on intelligent and active packaging in the food industry: Research and development. Food Research International, 141.
- [24] Forouzandeh M., N.C. Karmakar. 2015. Chipless RFID tags and sensors: A review on time-domain techniques. Wirel. Power Transf. 2 : 62-77.
- [25] Gaikwad K.K., S. Singh, A. Ajji. 2019. Moisture absorbers for food packaging applications. Environmental Chemistry Letters, 17: 609-628.
- [26] Ghaani M., C.A. Cozzolino, G. Castelli, S. Farris. 2016. An overview of the intelligent packaging technologies in the food sector. Trends Food Sci. Technol. 51 : 1-11.
- [27] Guo L. i in. 2020. Portable Food-Freshness Prediction Platform Based on Colorimetric Barcode Combinatorics and Deep Convolutional Neural Networks. Adv. Mater. 32: e2004805.
- [28] Han J.H. 2014. Chapter 1 – A review of food packaging technologies and innovations, in: J.H. Han (Ed.), Innovations in Food Packaging (Second Edition), Academic Press, San Diego.
- [29] Han J.-W., L. Ruiz-Garcia, J.-P. Qian, X.-T. Yang. 2018. Food Packaging: A Comprehensive Review and Future Trends. Compr. Rev. Food Sci. Food Saf. 17: 860-877.
- [30] Huang W. i in. 2012. A passive radio-frequency pH-sensing tag for wireless food-quality monitoring. IEEE Sensors Journal 12 : 487-495.
- [31] Istiqola A., A. Syafiuddin. 2020. A review of silver nanoparticles in food packagingtechnologies: Regulation, methods, properties, migration,and future challenges. J. Chin. Chem. Soc. 67 : 1942 -1956.
- [32] Iturriaga L., I. Olabarrieta, A. Castellan, C. Gardrat, V. Comab. 2014. Active naringin-chitosan films: Impact of UV irradiation. Carbohydr. Polym. 110: 374-381.
- [33] Jamshidian M., E.A. Tehrany, F. Cleymand, S. Leconte, T. Falher, S. 2012. Desobry Effects of synthetic phenolic antioxidants on physical, structural, mechanical and barrier properties of poly lactic acid film. Carbohydr. Polym. 87: 1763-1773.
- [34] Janjarasskul T., P. Suppakul. 2018. Active and intelligent packaging: The indication of quality and safety. Critical Reviews in Food Science and Nutrition, 58 : 808-831.
- [35] Jia R., T. Weiguo, B. Haotian, Z. Jinming, W. Shu, Z. Jun. 2019. Amine-responsive cellulose-based ratiometric fluorescent materials for real-time and visual detection of shrimp and crab freshness. Nat. Commun. 10 :795.
- [36] Kalpana S., S.R. Priyadarshini, M. Maria Leena, J.A. Moses, C. Anandharamakrishnan. 2019. Intelligent packaging: Trends and applications in food systems. Trends Food Sci. Technol. 93 :145-157.
- [37] Kanatt, S.R. 2020. Development of active/intelligent food packaging film containing Amaranthus leaf extract for shelf life extension of chicken/fish during chilled storage. Food Packaging and Shelf Life. 24.
- [38] Kazi A., S.P. Panda. 2022. Determining the freshness of fruits in the food industry by image classification using transfer learning. Multimedia Tools Appl. 81 : 7611-7624.
- [39] Korzeniowski A., M. Skrzypek. 1999. Ekologistyka zużytych opakowań , ILiM, Poznań 1999.
- [40] Kumari L., K. Narsaiah, M. Grewal, R. Anurag. 2015. Application of RFID in agri-food sector. Trends Food Sci. Technol. 43:144–161.
- [41] Kuswandi B., J.A. Restyana, A. Abdullah, L.Y. Heng, M. Ahmad. 2012. A novel colorimetric food package label for fish spoilage based on polyaniline film. Food Control 25:184-189.
- [42] Lawrie K., A. Mills, D. Hazafy. 2013. Simple inkjet-printed, UV-activated oxygen indicator. Sens. Actuators B Chem. 176 :1154-1159.
- [43] Lim S., S. Gunasekaran, J.Y. Imm. 2012. Gelatin-templated gold nanoparticles as novel time-temperature indicator. Journal of Food Science, 77:45-49.
- [44] Lisińska-Kuśmierz M., M. Ucherek. 2003. Współczesne opakowania, akademia ekonomiczna w Krakowie wydawnictwo Naukowe PTTŻ.
- [45] Lorite G.S. i in. 2017. Novel, smart and RFID assisted critical temperature indicator for supply chain monitoring. J. Food Eng. 193 : 20-28.
- [46] Mathew S., S. Snigdha, M. Jyothis, E.K. Radhakrishnan. 2019. Biodegradable and active nanocomposite pouches reinforced with silver nanoparticles for improved packaging of chicken sausages. Food Packag. Shelf Life 19:155-166.
- [47] Mills A., D. Hazafy. 2009. Nanocrystalline SnO2-based, UVB-activated, colourimetric oxygen indicator. Sens. Actuators B Chem. 136:344-349.
- [48] Minelli G., D.P. Lo Fiego, P. Macchioni, P. Fava. 2020. Effect of different illumination sources on colour and oxidative stability of seasoned Coppa di Parma PGIItal. J. Food Sci. 32 :181.
- [49] Mirzaei-Mohkam A., F. Garavand, D. Dehnad, J. Keramat, A. Nasirpour. 2019. Optimisation, antioxidant attributes, stability and release behaviour of carboxymethyl cellulose films incorporated with nanoencapsulated vitamin E. Prog. Org. Coat. 134:333-341.
- [50] Mondal D. i in. 2013. Effect of poly(vinyl pyrrolidone) on the morphology and physical properties of poly(vinyl alcohol)/sodium montmorillonite nanocomposite films. Prog. Nat. Sci.: Mater. Int. 23:579-587.
- [51] Müller P., M. Schmid. 2019. Intelligent Packaging in the Food Sector: ABrief, Overview Foods. Foods. 8 :16.
- [52] Musso Y. S., P.R. Salgado, A.N. Mauri. 2016. Gelatin based films capable of modifying its color against environmental pH changes. Food Hydrocolloids, 61 :523-530.
- [53] Nierzwicki W. 2008. Jakość żywności, cz.1, Wyd. Wyższej Szkoły Turystyki i Hotelarstwa w Gdańsku, Gdańsk 2008.
- [54] Nunes-Silva P. i in. 2018. Applications of RFID technology on the study of bees. Insectes Sociaux 66:15-24.
- [55] Ólafsdóttir G., K. Kristbergsson. 2006. Electronic-nose technology: application for quality evaluation in the fish industry. Odors in the Food Industry 57.
- [56] Omerović N. i in.2021. Antimicrobial nanoparticles and biodegradable polymer composites for active food packaging applications. Compr. Rev. Food Sci. Food Saf. 20 : 2428-2454.
- [57] Orsuwan A. i in. 2016. Preparation of antimicrobial agar/banana powder blend films reinforced with silver nanoparticles. Food Hydrocoll. 60 :476-485.
- [58] Ortega F., M.A.García, V.B. Arce. 2019. Nanocomposite films with silver nanoparticles synthesized in situ: Effect of corn starch content. Food Hydrocoll. 97:105200.
- [59] Palakodati S.S.S., V.R. Chirra, Y. Dasari, S. Bulla. 2020. Fresh and Rotten Fruits Classification Using CNN and Transfer Learning. Rev. D’intelligence Artif. 34 : 617–622.
- [60] Papkovsky D. B., R. I. Dmitriev. 2013. Biological detection by optical oxygen sensing. Chemical Society Reviews, 42 :8700-8732.
- [61] Parham S. i in. 2017. In situ synthesis of silver nanoparticles for Ag-NP/cotton nanocomposite and its bactericidal effect. J. Chin. Chem. Soc. 64:1286.-1293.
- [62] Pereira P.F.M., P.H.S. Picciani, V.M.A. Calado, R.V. Tonon. 2020. Gelatin-based nanobiocomposite films as sensitive layers for monitoring relative humidity in food packaging. Food and Bioprocess Technology 13:1063-1073.
- [63] Peri C. 2006. The universe of food quality, Food Quality and Preference 17:3-8.
- [64] Pourjavaher S., H. Almasi, S. Meshkini, S. Pirsa, E. Parandi. 2017. Development of a colorimetric pH indicator based on bacterial cellulose nanofibers and red cabbage (Brassica oleraceae) extract. Carbohydrate Polymers 156 :193–201.
- [65] Poyatos-Racionero E., J.V. Ros-Lis, J.L. Vivancos, R. Martınez-Máñez. 2018. Recent advances on intelligent packaging as tools to reduce food waste. Journal of Cleaner Production 172:3398-3409.
- [66] Raju R., G.E. Bridges. 2021. Radar cross section-based chipless tag with built-in reference for relative humidity monitoring of packaged food commodities. IEEE Sensors Journal, 21 :18773-18780.
- [67] Ramos M., A. Valdés, A.C. Mellinas, M.C. Garrigós. 2015. New Trends in Beverage Packaging Systems: A R eview. Beverages 1:248-272.
- [68] Roy S., J.W. Rhim. 2020. Anthocyanin food colorant and its application in pH responsive color change indicator films. Critical Reviews in Food Science and Nutrition. 61:2297-2325.
- [69] Roy S., J.-W. Rhim. 2020. Preparation of antimicrobial and antioxidant gelatin/curcumin composite films for active food packaging application. Colloids Surf. B: Biointerfaces 188:110761.
- [70] Rukchon C., A. Nopwinyuwong, S. Trevanich, T. Jinkarn, P. Suppakul. 2014. Development of a food spoilage indicator for monitoring freshness of skinless chicken breast. Talanta 130:547-554.
- [71] Rux G. i in. 2016. Humidity-Regulating Trays: Moisture Absorption Kinetics and Applications for Fresh Produce Packaging. Food Bioprocess. Technol. 9: 709-716.
- [72] Saliu F., R.D. Pergola. 2018. Carbon dioxide colorimetric indicators for food packaging application: Applicability of anthocyanin and poly-lysine mixtures, Sens. Actuators B Chem. 258 :1117-1124.
- [73] Sarac A., N. Absi, S. Dauzère-Pérès. 2010. A literature review on the impact of RFID technologies on supply chain management. Int. J. Prod. Econ. 128:77-95.
- [74] Shafiq Y. i in. 2019. A Reusable Battery-Free RFID Temperature Sensor. IEEE Trans. Antennas Propag. 67:6612-6626.
- [75] Shaikh S., M. Yaqoob, P. Aggarwal. 2021. An overview of biodegradable packaging in food industry. Curr. Res. Nutr. Food Sci. 4:503-520.
- [76] Sharma R., S.M. Jafari, S. Sharma. 2020. Antimicrobial bio-nanocomposites and their potential applications in food packaging. Food Control 112:107086.
- [77] Sid S., R.S. Mor, A. Kishore, V.S. Sharanagat. 2021. Bio-sourced polymers as alternatives to conventional food packaging materials: A review. Trends Food Sci. Technol. 115:87-104.
- [78] Siddiqui J., M. Taheri, A.U. Alam, M.J. Deen. 2021. Nanomaterials in smart packaging applications: A review. Small. 2101171.
- [79] Singh P., R. Verma 2020. Bioplastics: A green approach toward sustainable environment, in: A. Singh (Ed.), Environmental Microbiology and Biotechnology: Volume 1: Biovalorization of Solid Wastes and Wastewater Treatment, Springer, Singapore. 35.
- [80] Sondi I., B. Salopek-Sondi. 2004. Silver nanoparticles as antimicrobial agent: a case study on E. coli as a model for Gram-negative bacteria. J. Colloid Interface Sci. 275:177-182.
- [81] The World Bank, Food-borne Illnesses Cost US$ 110 Billion Per Year in Lowand Middle- Income Countries, https://www.worldbank.org/en/news/pressrelease/2018/10/23/food-borne-illnesses-cost-us-110-billion-per-year-in-lowand-middle-incomecountries, (accessed 09 07 2020).
- [82] Torres-Arreola W., H. Soto-Valdez, E. Peralta, J.L. Cárdenas-López, J.M. Ezquerra-Brauer. 2007. Effect of a low-density polyethylene film containing butylated hydroxytoluene on lipid oxidation and protein quality of sierra fish (Scomberomorus sierra) muscle during frozen storage. J. Agric. Food Chem. 55:6140-6146.
- [83] Umaraw P. i in. 2020. Edible films/coating with tailored properties for active packaging of meat, fish and derived products. Trends Food Sci. Technol. 98:10-24.
- [84] Venkatachalam H., R. Palaniswamy. 2020. Bioplastic world: A review. J. Adv. Sci. Res. 11:43-53.
- [85] Videira-Quintela D. i in. 2021. Recent advances in polymer-metallic composites for food packaging applications. Trends Food Sci. Technol. 109:230-244.
- [86] Vilela C. i in. 2017. Bioactive chitosan/ellagic acid films with UV-light protection for active food packaging. Food Hydrocoll. 73 :120-128.
- [87] Vu C.H., K. Won. 2013. Novel water-resistant UV-activated oxygen indicator for intelligent food packaging. Food Chemistry 140 : 52-56.
- [88] Vu C.H., K. Won. 2014. Leaching-resistant carrageenan-based colorimetric oxygen indicator films for intelligent food packaging. Journal of Agricultural and Food Chemistry 62 :7263-7267.
- [89] Wang S., X. Liu, M. Yang, Y. Zhang, K. Xiang, R. Tang. 2015. Review of time temperature indicators as quality monitors in food packaging. Packaging Technology and Science 28:839–867.
- [90] Wawrzynek E., C. Baumbauer, A. C. Arias. 2021. Characterization and comparison of biodegradable printed capacitive humidity sensors. Sensors 21:6557.
- [91] Wen H., Y.-I. Hsu, T.-A. Asoh, H. Uyama. 2020. Antioxidant activity and physical properties of pH-sensitive biocomposite using poly(vinyl alcohol) incorporated with green tea extract. Polymer Degradation and Stability 178:109215.
- [92] Won K., N.Y. Jang, J. Jeon. 2016. A natural component-based oxygen indicatorwith In- Pack activation for intelligent food packaging. Journal of Agricultural and Food Chemistry 64:9675-9679.
- [93] Yang H.-J., J.-H. Lee, M. Won, K. B. Song. 2016. Antioxidant activities of distiller dried grains with solubles as protein films containing tea extracts and their application in the packaging of pork meat. Food Chem. 196:174-179.
- [94] Yang W. i in. 2020. Poly(lactic acid)/lignin films with enhanced toughness and anti-oxidation performance for active food packaging. Int. J. Biol. Macromol. 144 :102-110.
- [95] Ye M., C. Qian, W. Sun, L. He, J. Jia, Y. Dong, W. Zhou. 2016. Dye colour switching by hydride-terminated silicon particles and its application as an oxygen indicator. J. Mater. Chem. 4:4577-4583.
- [96] Yusufu D., A. Mills. 2019. A colourimetric vacuum air-pressure indicator. Analyst 144: 5947-5952.
- [97] Zang W., X. Li, W. Jiang. 2020. Development of antioxidant chitosan film with banana peels extract and its application as coating in maintaining the storage quality of apple, Int. J. Biol. Macromol. 154:1205-1214.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-61607f00-e399-4028-bed8-9d4ea828c1e0
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.