Identyfikatory
Warianty tytułu
Języki publikacji
Abstrakty
Unmanned aerial vehicles (UAVs) require precise system identification for optimal performance and safety, yet sensor noise and signal distortion frequently compromise data quality. Recent studies have explored various approaches to mitigate these issues. However, this study introduces a novel method that utilizes wavelet transform techniques, distinctively enhancing UAV sensor signal processing. Unlike conventional methods that primarily focus on noise reduction, this approach employs multi-resolution wavelet decomposition to denoise and align signals effectively, crucial for accurate system identification. This systematic exploration of various wavelet bases and the application of the output error method for correlating signals provide a unique combination not extensively covered in current literature. The technique was validated using simulated sensor data at 50 Hz from a small UAV platform, the Multiplex®Fun Cub, specifically targeting longitudinal dynamics response. Results demonstrated substantial improvements in signal quality, with significantly enhanced correlation coefficients, showcasing the potential of our wavelet techniques to refine UAV system analysis. This paper presents a comprehensive framework for applying wavelet-based techniques in UAV system identification, significantly advancing the robustness and reliability of identification processes and distinguishing our work from existing methods by its integration of wavelet decomposition and advanced system identification techniques.
Rocznik
Tom
Strony
art. no. e152216
Opis fizyczny
Bibliogr. 42 poz., rys., tab., wykr.
Twórcy
autor
- Institute of Aeronautics and Applied Mechanics, Warsaw University of Technology, 00-665 Warsaw, Poland
autor
- Institute of Aeronautics and Applied Mechanics, Warsaw University of Technology, 00-665 Warsaw, Poland
Bibliografia
- [1] P. Lichota, “Wavelet Transform-Based Aircraft System Identification,” J. Guid. Control Dyn., vol. 46, no. 2, pp. 350–361, Feb. 2023, doi: 10.2514/1.G006654.
- [2] P. Kapler, “An application of continuous wavelet transform and wavelet coherence for residential power consumer load profiles analysis,” Bull. Pol. Acad. Sci. Tech. Sci., vol. 69, no. 1, p. e136216, 2021, doi: 10.24425/bpasts.2020.136216.
- [3] S.K. Fatima, M. Abbas, I. Mir, S. Mir, and F. Gul, “A Perspective Analysis on Effects of Varying Inputs on UAV Model Estimation,” J. Intell. Robot. Syst., vol. 108, no. 4, p. 71, Jul. 2023, doi: 10.1007/s10846-023-01889-0.
- [4] B.M. Simmons, J.L. Gresham, and C.A. Woolsey, “Flight-Test System Identification Techniques and Applications for Small, Low-Cost, Fixed-Wing Aircraft,” J. Aircr., vol. 60, no. 5, pp. 1503–1521, Sep. 2023, doi: 10.2514/1.C037260.
- [5] S.K. Fatima, S.M. Abbas, I. Mir, F. Gul, and A. Forestiero, “Flight Dynamics Modeling with Multi-Model Estimation Techniques: A Consolidated Framework,” J. Electr. Eng. Technol., vol. 18, no. 3, pp. 2371–2381, May 2023, doi: 10.1007/s42835-023-01376-4.
- [6] D. Zhang, “Wavelet Transform,” in Fundamentals of Image Data Mining: Analysis, Features, Classification and Retrieval, D. Zhang, Ed., Cham: Springer International Publishing, 2019, pp. 35–44, doi: 10.1007/978-3-030-17989-2_3.
- [7] T. Guo, T. Zhang, E. Lim, M. López-Benítez, F. Ma, and L. Yu, “A Review of Wavelet Analysis and Its Applications: Challenges and Opportunities,” IEEE Access, vol. 10, pp. 58869–58903, 2022, doi: 10.1109/ACCESS.2022.3179517.
- [8] F.C. Sanders, M. Tischler, T. Berger, M.G. Berrios, and A. Gong, “System Identification and Multi-Objective Longitudinal Control Law Design for a Small Fixed-Wing UAV,” in 2018 AIAA Atmospheric Flight Mechanics Conference, Kissimmee, Florida, Jan. 2018, doi: 10.2514/6.2018-0296.
- [9] M.A. Cunningham and J.E. Hubbard, “Open-Loop Linear Model Identification of aMultirotor Vehicle with Active Feedback Control,” J. Aircr., vol. 57, no. 6, pp. 1044–1061, Nov. 2020, doi: 10.2514/1.C035834.
- [10] O. Medaiyese, M. Ezuma, A.P. Lauf, and I. Guvenc, “Wavelet transform analytics for RF-based UAV detection and identification system using machine learning,” Pervasive Mob. Comput., vol. 82, p. 101569, Jun. 2022, doi: 10.1016/j.pmcj.2022.101569.
- [11] M. Naruoka, T. Hino, and T. Tsuchiya, “Application of Wavelet Transform to System Identification of Small UAVs Flight Characteristic,” in AIAA Infotech@Aerospace 2010, 2010, doi: 10.2514/6.2010-3536.
- [12] S. Tong, Z. Shi, T. Yun, and Y. Dong, “Longitudinal flight dynamics modeling and a flight stability analysis of a monocopter,” AIP Adv., vol. 12, no. 11, p. 115322, Nov. 2022, doi: 10.1063/5.0130626.
- [13] S. Zhou, Z. He, X. Chen, and W. Chang, “An Anomaly Detection Method for UAV Based on Wavelet Decomposition and Stacked Denoising Autoencoder,” Aerospace, vol. 11, no. 5, p. 5, May 2024, doi: 10.3390/aerospace11050393.
- [14] L.E. Hale, M. Patil, and C.J. Roy, “Aerodynamic Parameter Identification and Uncertainty Quantification for Small Unmanned Aircraft,” J. Guid. Control Dyn., vol. 40, no. 3, pp. 680–691, Mar. 2017, doi: 10.2514/1.G000582.
- [15] E. Balestrieri, P. Daponte, L. De Vito, F. Picariello, and I. Tudosa, “Sensors and Measurements for UAV Safety: An Overview,” Sensors, vol. 21, no. 24, p. 24, Jan. 2021, doi: 10.3390/s21248253.
- [16] J. Peng, P. Zhang, L. Zheng and J. Tan, “UAV Positioning Based on Multi-Sensor Fusion,” IEEE Access, vol. 8, pp. 34455–34467, 2020, doi: 10.1109/ACCESS.2020.2974285.
- [17] L. Kivistik, M. Mehrparvar, M. Eerme, and J. Majak, “Dynamics of flight of the fragments with higher order Haar wavelet method,” P. Est. Acad. Sci., vol. 73, no. 2, p. 108, 2024, doi: 10.3176/proc.2024.2.02.
- [18] R.V. Jategaonkar, Flight Vehicle System Identification: A Time-Domain Methodology, Second Edition. Reston, VA: American Institute of Aeronautics and Astronautics, Inc., 2015, doi: 10.2514/4.102790.
- [19] B.N. Pamadi, Performance, Stability, Dynamics, and Control of Airplanes, Third Edition. Reston, VA: American Institute of Aeronautics and Astronautics, Inc., 2015, doi: 10.2514/4.102745.
- [20] P. Jimenez, P. Lichota, D. Agudelo, and K. Rogowski, “Experimental Validation of Total Energy Control System for UAVs,” Energies, vol. 13, no. 1, p. 14, Dec. 2019, doi: 10.3390/en13010014.
- [21] I.-R. Edu, F.-C. Adochiei, P. Negrea, C. Rotaru, and T.L. Grigorie, “New Tuning Method of the Wavelet Function for Inertial Sensors Signals Denoising,” in CSCC14. Org and EUROPMENT Conferences, 2014, pp. 16–18. [Online]. Available: https://inase.org/library/2014/santorini/bypaper/MATH/MATH-22.pdf (Accessed: Aug. 04, 2024).
- [22] P. Lichota, “Unstable tilt-rotor maximum likelihood wavelet-based identification from flight test data,” Aircr. Eng. Aerosp. Technol., vol. 95, no. 8, pp. 1275–1285, Jul. 2023, doi: 10.1108/Aircr.Eng.Aerosp.Technol.-01-2023-0013.
- [23] H. Mwenegoha, T. Moore, J. Pinchin, and M. Jabbal, “Model-Based Autonomous Navigation with Moment of Inertia Estimation for Unmanned Aerial Vehicles,” Sensors, vol. 19, no. 11, p. 11, Jan. 2019, doi: 10.3390/s19112467.
- [24] M.V. Cook, Flight Dynamics Principles: A Linear Systems Approach to Aircraft Stability and Control. Butterworth-Heinemann, 2012.
- [25] Multiplex, “Multiplex Fun cub Manual.” Hitecrcd, 2024. [On-line]. Available: https://hitecrcd.com/files/FunCubManual.pdf (Accessed: Jan. 08, 2024).
- [26] “Multiplex Fun Cub model.” Mutiplex Modellsport GmbH & Co. KG. [Online]. Available: https://shop.multiplex-rc.de/en/rr-funcub-ng-blue-p4212/ (Accessed: Aug. 05, 2024).
- [27] “XFLR5 – Browse Files at SourceForge.net.” SourceForge. [On-line]. Available: https://sourceforge.net/projects/xflr5/files/ (Accessed: Aug. 04, 2024).
- [28] A. Septiyana et al., “Analysis of aerodynamic characteristics using the vortex lattice method on twin tail boom unmanned aircraft,” in 3rd International Seminar on Metallurgy and Materials (ISMM2019): Exploring New Innovation in Metallurgy and Materials, Tangerang Selatan, Indonesia, 2020, p. 020003, doi: 10.1063/5.0002337.
- [29] B.M. Simmons, “System Identification of a Nonlinear Flight Dynamics Model for a Small, Fixed-Wing UAV,” Virginia Tech., 2018. [Online]. Available: http://hdl.handle.net/10919/95324 (Accessed: Aug. 04, 2024).
- [30] C. Deiler, “Aerodynamic Modeling, System Identification, and Analysis of Iced Aircraft Configurations,” J. Aircr., vol. 55, no. 1, pp. 145–161, Jan. 2018, doi: 10.2514/1.C034390.
- [31] C. Seren, F. Bommier, L. Verdier, A. Bucharles, and D. Alazard, “Optimal Experiment and Input Design for Flight Test Protocol Optimization,” in AIAA Atmospheric Flight Mechanics Conference and Exhibit, Keystone, Colorado, Aug. 2006, doi: 10.2514/6.2006-6280.
- [32] P. Lichota, “Multi-Axis Inputs for Identification of a Reconfigurable Fixed-Wing UAV,” Aerospace, vol. 7, no. 8, p. 113, Aug. 2020, doi: 10.3390/aerospace7080113.
- [33] M.S. Roeser and N. Fezans, “Method for designing multi-input system identification signals using a compact time-frequency representation,” CEAS Aeronaut. J., vol. 12, no. 2, pp. 291–306, Apr. 2021, doi: 10.1007/s13272-021-00499-6.
- [34] N. Fezans, C. Deiler, and M.S. Roeser, “Generation of a Dataset for System Identification with VIRTTAC-Castor,” in DLRK 2019, 2019, [Online]. Available: https://elib.dlr.de/129105/ (Accessed: Aug. 04, 2024).
- [35] M. Marchand, “Untersuchung der Bestimmbarkeit der flugmechanischen Derivative des CCV-Versuchsträgers F-104 G,” Tech. Rep. DLR-IB 154-74/32, DLR Institute of Flight Mechanics, Brunswick, Germany, 1977.
- [36] R. Koehler and K. Wilhelm, “Auslegung von Eingangssignalen für die Kennwertermittlung,” Report IB 154–77/40, DFVLR Institut für Flugmechanik, Braunschweig, F.R. Germany, 1977, pp. 154–77.
- [37] T.F.K. Cordeiro, J.P. L.C. Da Costa, K. Liu, and G.A. Borges, “Kalman-based attitude estimation for an UAV via an antenna array,” in 2014 8th International Conference on Signal Processing and Communication Systems (ICSPCS), Gold Coast, Australia, Dec. 2014, pp. 1–10, doi: 10.1109/ICSPCS.2014.7021136.
- [38] A. Symington, R. De Nardi, S. Julier, and S. Hailes, “Simulating quadrotor UAVs in outdoor scenarios,” in 2014 IEEE/RSJ International Conference on Intelligent Robots and Systems, Chicago, IL, USA, Sep. 2014, pp. 3382–3388, doi: 10.1109/IROS.2014.6943033.
- [39] R.S. Stanković and B.J. Falkowski, “The Haar wavelet transform: its status and achievements,” Comput. Electr. Eng., vol. 29, no. 1, pp. 25–44, Jan. 2003, doi: 10.1016/S0045-7906(01)00011-8.
- [40] E. Marciniak, M. Stopa, T. Marciniak, A. Stankiewicz, P. Rakowicz, and A. Dąbrowski, “Denoising methods for improving automatic segmentation in OCT images of human eye,” Bull. Pol. Acad. Sci. Tech. Sci., vol. 65, no. 1, pp. 71–78, 2017, doi: 10.1515/bpasts-2017-0009.
- [41] C.M. Akujuobi, Wavelets and Wavelet Transform Systems and Their Applications: A Digital Signal Processing Approach. Cham: Springer International Publishing, 2022. doi: 10.1007/978-3-030-87528-2.
- [42] L.P.A. Arts and E.L. van den Broek, “The fast continuous wavelet transformation (fCWT) for real-time, high-quality, noise-resistant time–frequency analysis,” Nat. Comput. Sci., vol. 2, no. 1, pp. 47–58, 2022, doi: 10.1038/s43588-021-00183-z.
Uwagi
Opracowanie rekordu ze środków MNiSW, umowa nr POPUL/SP/0154/2024/02 w ramach programu "Społeczna odpowiedzialność nauki II" - moduł: Popularyzacja nauki (2025).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-60769c07-29c9-462b-97a6-b367c2b896f8
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.