PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Bioconversion of Citrofortunella Microcarpa Fruit Waste Into Lactic Acid By Lactobacillus Plantarum

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
The processing of Citrofortunella mircocarpa fruit juice generates large volume of solid waste, causing disposal problem. Several studies have demonstrated that wastes from agricultural and food processing industries such as fruit and vegetable peels contain high amount of polysaccharides that can be transformed into useful chemicals, including lactic acid, through fermentation. Lactic acid is widely used in various industries, such as in the manufacture of biodegradable plastic, and the demand for this chemical justifies the search of renewable feedstock for its biotechnological production. This study aimed to produce lactic acid from C. microcarpa fruit waste biomass through fermentation with Lactobacillus plantarum. The hydrolysate from C. microcarpa fruit waste was prepared, inoculated with different amounts of L. plantarum cell suspension, and incubated for three days. Lactic acid production was monitored daily. The lactic acid produced from the fermentation was recovered as calcium lactate and lactic acid crystals. The identity of the crystals was evaluated using Fourier transform infrared spectroscopy (FTIR) spectroscopy and paper chromatography. The highest lactic acid production was observed in fermentation mixtures containing the highest number of L. plantarum cells. Within three days of fermentation, the amount of lactic acid production increased with increasing period of incubation. Partial characterization of the crystals recovered from the fermentation mixtures by FTIR spectroscopy showed that the peaks in the spectrum were consistent with the chemical structure of lactate. Paper chromatography results likewise confirmed that the crystals are lactate. C. microcarpa fruit waste can afford lactic acid when fermented with L. plantarum. The results of the study may serve as basis for the development of technology for the utilization of C. microcarpa fruit waste biomass as renewable resource for industrial production of lactic acid.
Rocznik
Strony
35--41
Opis fizyczny
Bibliogr. 24 poz., tab., rys.
Twórcy
  • Department of Environmental Science, Central Luzon State University, Science City of Muñoz 3120, Nueva Ecija, Philippines
  • Department of Chemistry, Central Luzon State University, Science City of Muñoz 3120, Nueva Ecija, Philippines
  • Department of Environmental Science, Central Luzon State University, Science City of Muñoz 3120, Nueva Ecija, Philippines,
autor
  • Department of Biological Sciences, Central Luzon State University, Science City of Muñoz 3120, Nueva Ecija, Philippines
autor
  • Department of Chemistry, Central Luzon State University, Science City of Muñoz 3120, Nueva Ecija, Philippines
Bibliografia
  • 1. Abdel-Rahman, M., Tashiro, Y., & Sonomoto, K. 2013. Recent advances in lactic acid production by microbial fermentation processes. Biotechnology Advances, 31, 877–902.
  • 2. Al-Asady, A.G. 2012. Production of lactic acid by a local isolate of Lactobacillus platarum using cheap starchy material hydrolysates. Pakistan Journal of Nutrition, 11(1), 88–93.
  • 3. Anzaldo, F.E., & Briones, A.V. 1993. Studies on the utilization of citrus wastes. NRCP Research Journal, 3(2), 115–142.
  • 4. Arancon, R.D., Lin, C., Chan, K., Kwan, T., & Luque, R. 2013. Advances on waste valorization: new horizons for a more sustainable society. Energy Science and Engineering, 1(2), 53–71.
  • 5. Chick, H., Shin, H.S., & Ustunol, Z. 2001. Growth and acid production by lactic acid bacteria and bifidobacteria grown in skim milk containing honey. Journal of Food Science, 66(3), 478–481.
  • 6. Coates, J. 2000. Interpretation of infrared spectra, a practical approach. In: R. Meyers (Ed.), Encyclopedia of Analytical Chemistry. Chichester, UK, John Wiley & Sons, pp. 10815–10837.
  • 7. Couto, S.R. 2008. Exploitation of biological wastes for the production of value-added products under solid-state fermentation conditions. Biotechnology Journal, 3, 859–870.
  • 8. Datta, R. & Henry, M. 2006. Lactic acid: recent advances in products, processes and technologies- a review. Journal of Chemical Technology and Biotechnology, 81, 1119–1129.
  • 9. Evangelista, R.L. 1994. Recovery and purification of lactic acid from fermentation broth by adsorption. Iowa State University, Retrospective Theses and Disserations. Paper 11252. Retrieved from Iowa State University Digital Repository: http://lib.dr.iastate.edu/cgi/viewcontent. cgi?article=12251&context=rtd
  • 10. Huang, L., Jin, B., Lant, P., & Zhou, J. 2003. Biotechnological production of lactic acid integrated with potato wastewater treatment by Rhizopus arrhizus. Journal of Chemical Technology and Biotechnology, 78, 899–906.
  • 11. Jawad, A.H., Alkarkhi, A.F., Jason, O.C., Easa, A., & Nirulaini, N. 2013. Production of the lactic acid from mango peel waste – Factorial experiment. Journal of King Saud University – Science, 25, 39–45.
  • 12. Karthikeyan, A. & Sivakumar, N. 2010. Citric acid production by Koji fermentation using banana peel as a novel substrate. Bioresource Technology, 101, 5552–5556.
  • 13. Martinez, F.C., Balciunas, E.M., Salgado, J., Gonzalez, J.D., Converti, A., & Oliveira, R.D. 2013. Lactic acid properties, applications and production: A review. Trends in Food Science and Technology, 30, 70–83.
  • 14. Mirabella, N., Castellani, V., & Sala, S. 2014. Current options for the valorization of food manufacturing waste: a review. Journal of Cleaner Production, 65, 28–41.
  • 15. Mudaliyar, P., Sharma, L., & Kulkarni, C. 2012. Food waste management: lactic acid production by Lactobacillus species. Internationa Journal of Advanced Biological Research, 2(1), 34–38.
  • 16. Pumiput, P., Chuntranuluck, S., Kitpreechavanich, V., Punsuvon, V., & Vaithanomsat, P. 2008. Production process of hydrolysate from steam explosion of oil palm trunk for xylitol fermentation. Kasetsart Journal (Natural Science), 42, 73–78.
  • 17. Raganati, F., Procentese, A., Oliveri, G., Russo, M., & Marzocchella, A. 2016. Butanol production by fermentation of fruit residues. Chemical Engineering Transactions, 49, 229–234.
  • 18. Real, R.R., & Digal, L.N. 2010. Analyzing marketing margins and their implications in improving performance of small-scale producers in the calamansi chain in Region XI, Southern Philippines. Banwa, 7(1), 69–91.
  • 19. Rivas, B., Torrado, A., Torre, P., Converti, A., & Dominguez, J. 2008. Submerged citric acid fermentation on orange peel autohydrolysate. Journal of Agricultural and Food Chemistry, 56, 2380–2387.
  • 20. Samonte, P.L., & Trinidad, T.P. 2013. Dietary fiber, phytonutrients and antioxidant activity of common fruit peels as potential functional food ingredient. Journal of Chemistry and Chemical Engineering, 7, 70–75.
  • 21. Sheeladevi, A., & Ramanathan, N. 2011. Lactic acid production using lactic acid bacteria under optimized conditions. International Journal of Pharmaceutical and Biological Archives, 2(6), 1686–1691.
  • 22. Sreenath, H.K., Moldes, A.B., Koegel, R.G., & Straub, R.J. 2001. Lactic acid production from agricultural residues. Biotechnology Letters, 23, 179–184.
  • 23. Umesh, M., & Preethi, K. 2014. Fermentative utilization of fruit peel waste for lactic acid production by Lactobacillus plantarum. Indian Journal of Applied Research, 4(9), 449–451.
  • 24. Van Dyk, J.S., Gama, R., Morrison, D., Swart, S., & Pletschke, B.I. 2013. Food processing waste: Problems, surrent management and prospects for utilisation of the lignocellulose component through enzyme synergistic degradation. Renewable and Sustainable Energy Reviews, 26, 521–531.
Uwagi
PL
Opracowanie ze środków MNiSW w ramach umowy 812/P-DUN/2016 na działalność upowszechniającą naukę (zadania 2017).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-600fdb15-83a7-4e5e-92de-28da934dfcce
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.